首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4452篇
  免费   473篇
  国内免费   404篇
化学   2970篇
晶体学   42篇
力学   264篇
综合类   27篇
数学   528篇
物理学   1498篇
  2023年   57篇
  2022年   101篇
  2021年   108篇
  2020年   137篇
  2019年   108篇
  2018年   114篇
  2017年   107篇
  2016年   151篇
  2015年   159篇
  2014年   199篇
  2013年   273篇
  2012年   369篇
  2011年   333篇
  2010年   243篇
  2009年   227篇
  2008年   287篇
  2007年   243篇
  2006年   224篇
  2005年   187篇
  2004年   149篇
  2003年   137篇
  2002年   113篇
  2001年   98篇
  2000年   119篇
  1999年   93篇
  1998年   77篇
  1997年   68篇
  1996年   91篇
  1995年   67篇
  1994年   70篇
  1993年   58篇
  1992年   62篇
  1991年   40篇
  1990年   35篇
  1989年   41篇
  1988年   41篇
  1987年   32篇
  1986年   44篇
  1985年   33篇
  1984年   36篇
  1983年   26篇
  1982年   20篇
  1981年   14篇
  1980年   22篇
  1979年   12篇
  1978年   11篇
  1977年   15篇
  1976年   17篇
  1975年   17篇
  1973年   9篇
排序方式: 共有5329条查询结果,搜索用时 15 毫秒
991.
高光谱成像的油菜和杂草分类方法   总被引:3,自引:0,他引:3  
利用高光谱成像技术结合化学计量学方法对油菜中的杂草进行分类识别。采用近红外高光谱技术,通过正态变量变换(SNV)、去趋势化(De-trending)、多元散射校正(MSC)、移动平均平滑法(MA)、多项式卷积平滑法(SG)、基线校正(baseline)及归一化(normalize)算法对光谱数据进行预处理,采用主成分载荷(PCA loadings)、载荷系数法(x-LW)、回归系数法(RC)、连续投影算法(SPA)分别进行特征波长提取,采用偏最小二乘判别分析(PLS-DA)、极限学习机(ELM)和支持向量机(SVM)建立分类模型。结果表明,基于De-trending 预处理,通过PCA loadings,x-loading weights及SPA特征波长提取方法,基于极限学习机ELM算法建立的模型取得了最优的分类效果,建模集和预测集的分类精度均达到100%,另引入平均分类精度的指标,发现不同试验时间下,模型分类精度变化不大,表明应用近红外高光谱成像技术对油菜和杂草进行分类是可行的。  相似文献   
992.
付云伟  倪新华  刘协权  张龙  文波 《力学学报》2016,48(6):1334-1342
含尖角的非椭球颗粒附近应力集中较大,诱导缺陷形成裂纹是材料损伤的重要来源.对于强界面颗粒,大刚度颗粒诱导裂纹向基体中扩展形成近似平面片状裂纹,认为诱导裂纹受颗粒应力附近应力场控制,基于有效自洽理论建立了材料细观损伤模型,得到了单向拉伸下的损伤演化,并分析了颗粒形状、尺寸、颗粒性能以及颗粒与初始缺陷相对位置等因素对材料损伤的影响.结果表明,非椭球颗粒更易诱发裂纹,同样外载应力下,损伤程度更大,含非椭球颗粒材料强度更低;含扁平型的颗粒材料裂纹损伤过程更加明显并且材料强度更大;提高颗粒刚度和含量能够增大材料强度.材料中存在尺寸过大或过小的初始裂纹时材料损伤过程不明显.  相似文献   
993.
Free-standing GaN films prepared with hydride vapor-phase epitaxy (HVPE) technique usually show bowing resulting from the high densities of defects near the N-polar face after separation from the original substrates. To solve the problem, a simple technique has been developed. A GaN layer was regrown on the N-polar face of the free-standing GaN by HVPE. High-resolution X-ray diffraction (HRXRD) measurements were performed to compare the bowings among GaN films before laser lift-off (LLO), after LLO, and after regrowth. The apparent reductions of XRD full-width at half-maximum (FWHM), along with the increase of XRD peak intensity, after regrowth clearly demonstrate the effectiveness of this method to eliminate bowings of the free-standing GaN films.  相似文献   
994.
Step-scan Fourier-transform infrared spectroscopy (ssFTIR) simultaneously provides the spectroscopic and kinetic information of a given reaction. ssFTIR has been extensively employed to acquire the transient absorption and emission spectra in gas phase for identifying unstable species, for example, various Criegee intermediates, and elucidating the dynamics and kinetics of the reaction, such as the molecular elimination dynamics of haloalkenes and the bimolecular reactions involving chlorine atoms and singlet oxygen atoms. In addition to gaseous studies, ssFTIR has been also utilized to record the time-resolved difference spectra of the photochemical reactions in condensed phases, such as the photolysis of metal–ligand complexes, photocycles of the retinal proteins, coordination capability of solvents to unstable transient species, chemical reactions of atmosphere-related molecules in aqua, and the exciplex dynamics of organic light emitting materials. Moreover, my group has pioneered the recording of the transient thermal infrared emission of gold nanostructures upon photoexcitation. The experimental setups and the working principles for probing the time-resolved infrared absorption and emission in condensed phases will be revealed and a number of studies on chemical, biological, and materials systems will be described. These reported results demonstrate that ssFTIR is a versatile tool for exploring the properties of novel materials and photoreactions in condensed phases.  相似文献   
995.
The ability to visualize biochemical interactions between microbial communities using MALDI MSI has provided tremendous insights into a variety of biological fields. Matrix application using a sieve proved to be incredibly useful, but it has many limitations that include uneven matrix coverage and limitation in the types of matrices that could be employed in studies. Recently, there has been a concerted effort to improve matrix application for studying agar plated microbial cultures, many of which utilized automated matrix sprayers. Here, we describe the usefulness of using a robotic sprayer for matrix application. The robotic sprayer has two-dimensional control over where matrix is applied, and a heated capillary that allows for rapid drying of the applied matrix. This method provided a significant increase in MALDI sensitivity over the sieve method, as demonstrated by FT-ICR MS analysis, facilitating the ability to gain higher lateral resolution MS images of Bacillus subtilis than previously reported. This method also allowed for the use of different matrices to be applied to the culture surfaces.
Graphical Abstract ?
  相似文献   
996.
冯艳艳  江成发  刘代俊  储伟 《中国物理 B》2014,23(2):28201-028201
In this paper we investigate the influence of microstructure on the CH4 adsorption behavior of deep coal. The coal microstructure is characterized by N2 adsorption at 77 K, scanning electron microscopy (SEM), Raman spectroscopy, and Fourier transform infrared spectroscopy (FT-IR). The CH4 adsorptions are measured at 298 K at pressures up to 5.0 MPa by the the volumetric method and fitted by the Langmuir model. The results show that the Langmuir model fits well with the experimental data, and there is a positive correlation with surface area, pore volume, ID/IG, and CH4 adsorption capacity. The burial depth also affects the methane adsorption capacity of the samples.  相似文献   
997.
冯艳艳  杨文  储伟 《中国物理 B》2014,(10):577-584
The main purpose of this work is to prepare various activated carbons by K2S activation of coal with size fractions of 60-80 meshes, and investigate the microporosity development and corresponding methane storage capacities. Raw coal is mixed with K2S powder, and then heated at 750 ℃-900 ℃ for 30 min-150 min in N2 atmosphere to produce the adsorbents. The texture and surface morphology are characterized by a N2 adsorption/desorption isotherm at 77 K and scanning electron microscopy (SEM). The chemical properties of carbons are confirmed by ultimate analysis. The crystal structure and degree of graphitization are tested by X-ray diffraction and Raman spectra. The relationship between sulfur content and the specific surface area of the adsorbents is also determined. K2S activation is helps to bring about better development of pore texture. These adsorbents are microporous materials with textural parameters increasing in a range of specific surface area 72.27 m2/g-657.7 m2/g and micropore volume 0.035 cm3/g-0.334 cm3/g. The ability of activated carbons to adsorb methane is measured at 298 K and at pressures up to 5.0 MPa by a volumetric method. The Langmuir model fits the experimental data well. It is concluded that the high specific surface area and micropore volume of activated carbons do determine methane adsorption capacity. The adsorbents obtained at 800 ℃ for 90 min with K2S/raw coal mass ratios of 1.0 and 1.2 show the highest methane adsorption capacities amounting to 106.98 mg/g and 106.17 mg/g, respectively.  相似文献   
998.
The Co Mg O and Co Mn Mg O catalysts are prepared by a co-precipitation method and used as the catalysts for the synthesis of carbon nanotubes(CNTs) through the catalytic chemical vapor deposition(CCVD). The effects of Mn addition on the carbon yield and structure are investigated. The catalysts are characterized by temperature programmed reduction(TPR) and X-ray diffraction(XRD) techniques, and the synthesized carbon materials are characterized by transmission electron microscopy(TEM) and thermo gravimetric analysis(TG). TEM measurement indicates that the catalyst Co Mg O enclosed completely in the produced graphite layer results in the deactivation of the catalyst. TG results suggest that the Co Mn Mg O catalyst has a higher selectivity for CNTs than Co Mg O. Meanwhile, different diameters of CNTs are synthesized by Co Mn Mg O catalysts with various amounts of Co content, and the results show that the addition of Mn avoids forming the enclosed catalyst, prevents the formation of amorphous carbon, subsequently promotes the growth of CNTs, and the catalyst with decreased Co content is favorable for the synthesis of CNTs with a narrow diameter distribution.The Co Mn Mg O catalyst with 40% Co content has superior catalytic activity for the growth of carbon nanotubes.  相似文献   
999.
Inorganic solid electrolytes have distinguished advantages in terms of safety and stability, and are promising to substitute for conventional organic liquid electrolytes. However, low ionic conductivity of typical candidates is the key problem. As connective diffusion path is the prerequisite for high performance, we screen for possible solid electrolytes from the 2004 International Centre for Diffraction Data (ICDD) database by calculating conduction pathways using Bond Valence (BV) method. There are 109846 inorganic crystals in the 2004 ICDD database, and 5295 of them contain lithium. Except for those with toxic, radioactive, rare, or variable valence elements, 1380 materials are candidates for solid electrolytes. The rationality of the BV method is approved by comparing the existing solid electrolytes’ conduction pathways we had calculated with those from experiments or first principle calculations. The implication for doping and substitution, two important ways to improve the conductivity, is also discussed. Among them Li2CO3 is selected for a detailed comparison, and the pathway is reproduced well with that based on the density functional studies. To reveal the correlation between connectivity of pathways and conductivity, α/γ-LiAlO2 and Li2CO3 are investigated by the impedance spectrum as an example, and many experimental and theoretical studies are in process to indicate the relationship between property and structure. The BV method can calculate one material within a few minutes, providing an efficient way to lock onto targets from abundant data, and to investigate the structure-property relationship systematically.  相似文献   
1000.
Block copolymers have been extensively studied over the last few decades because they can self‐assemble into well‐ordered nanoscale structures. The morphologies of block copolymers in confined geometries, however, are still not fully understood. In this work, the fabrication and morphologies of three‐dimensional polystyrene‐block‐polydimethylsiloxane (PS‐b‐PDMS) nanostructures confined in the nanopores of anodic aluminum oxide (AAO) templates are studied. It is discovered that the block copolymers can wet the nanopores using a novel solvent‐annealing‐induced nanowetting in templates (SAINT) method. The unique advantage of this method is that the problem of thermal degradation can be avoided. In addition, the morphologies of PS‐b‐PDMS nanostructures can be controlled by changing the wetting conditions. Different solvents are used as the annealing solvent, including toluene, hexane, and a co‐solvent of toluene and hexane. When the block copolymer wets the nanopores in toluene vapors, a perpendicular morphology is observed. When the block copolymer wets the nanopores in co‐solvent vapors (toluene/hexane = 3:2), unusual circular and helical morphologies are obtained. These three‐dimensional nanostructures can serve as naontemplates for refilling with other functional materials, such as Au, Ag, ZnO, and TiO2.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号