首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223715篇
  免费   1921篇
  国内免费   703篇
化学   124638篇
晶体学   3304篇
力学   8497篇
综合类   6篇
数学   24133篇
物理学   65761篇
  2021年   1866篇
  2020年   2152篇
  2019年   2469篇
  2018年   3324篇
  2017年   3243篇
  2016年   4525篇
  2015年   2624篇
  2014年   4086篇
  2013年   9662篇
  2012年   7500篇
  2011年   9184篇
  2010年   6421篇
  2009年   6202篇
  2008年   8759篇
  2007年   8791篇
  2006年   8186篇
  2005年   7453篇
  2004年   6635篇
  2003年   6034篇
  2002年   5862篇
  2001年   6066篇
  2000年   4764篇
  1999年   3527篇
  1998年   3068篇
  1997年   3091篇
  1996年   2901篇
  1995年   2368篇
  1994年   2449篇
  1993年   2495篇
  1992年   2632篇
  1991年   2693篇
  1990年   2584篇
  1989年   2558篇
  1988年   2482篇
  1987年   2456篇
  1986年   2374篇
  1985年   3085篇
  1984年   3222篇
  1983年   2587篇
  1982年   2863篇
  1981年   2734篇
  1980年   2534篇
  1979年   2739篇
  1978年   2849篇
  1977年   2872篇
  1976年   2852篇
  1975年   2705篇
  1974年   2678篇
  1973年   2821篇
  1972年   1881篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
The synthesis and characterization of novel first‐ and second‐generation true dendritic reversible addition–fragmentation chain transfer (RAFT) agents carrying 6 or 12 pendant 3‐benzylsulfanylthiocarbonylsulfanylpropionic acid RAFT end groups with Z‐group architecture based on 1,1,1‐hydroxyphenyl ethane and trimethylolpropane cores are described in detail. The multifunctional dendritic RAFT agents have been used to prepare star polymers of poly(butyl acrylate) (PBA) and polystyrene (PS) of narrow polydispersities (1.4 < polydispersity index < 1.1 for PBA and 1.5 < polydispersity index < 1.3 for PS) via bulk free‐radical polymerization at 60 °C. The novel dendrimer‐based multifunctional RAFT agents effect an efficient living polymerization process, as evidenced by the linear evolution of the number‐average molecular weight (Mn) with the monomer–polymer conversion, yielding star polymers with molecular weights of up to Mn = 160,000 g mol?1 for PBA (based on a linear PBA calibration) and up to Mn = 70,000 g mol?1 for PS (based on a linear PS calibration). A structural change in the chemical nature of the dendritic core (i.e., 1,1,1‐hydroxyphenyl ethane vs trimethylolpropane) has no influence on the observed molecular weight distributions. The star‐shaped structure of the generated polymers has been confirmed through the cleavage of the pendant arms off the core of the star‐shaped polymeric materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5877–5890, 2004  相似文献   
32.
This study is concerned with the temperature and molecular weight dependence of the strain-hardening behavior of polycarbonate. It is shown that the strain-hardening modulus reduces with increasing temperature and decreasing molecular weight. This result is interpreted in terms of temperature accelerated relaxation of the entanglement network. Moreover, it is shown that frozen-in orientations, induced by homogeneous deformations above the glass transition temperature, lead to anisotropic yield behavior that can be fully rationalized (and modelled) in terms of a superimposed stress contribution of the prestrained network. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2041–2049, 2004  相似文献   
33.
The effects of the size (pseudo‐generation number) and nature of end groups on physical and rheological properties were investigated for a series of hyperbranched polyesters based on an ethoxylated pentaerythritol core and 2,2‐bis‐(hydroxymethyl)propionic acid repeat units. The observed linear dependence of the melt viscosity on the molar mass in the high pseudo‐generation‐number limit indicated that entanglement effects were substantially absent. Moreover, the marked influence of end capping of the end groups on the physical and rheological properties suggested that intermolecular interactions were dominated by contacts between the outer shells of the molecules, in which the end groups were assumed to be concentrated. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1218–1225, 2004  相似文献   
34.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   
35.
Crystals of Saccharomyces cerevisiae inorganic pyrophosphatase suitable for X-ray diffraction study were grown by cocrystallization of the enzyme with cobalt chloride and imidodiphosphate. Saccharomyces cerevisiae is a metal-dependent enzyme which catalyzes hydrolysis of inorganic pyrophosphate to orthophosphate. The three-dimensional structure of this enzyme was solved by the molecular-replacement method and refined at 1.8 Å resolution to an R factor of 19.5%. Cobalt and phosphate ions were revealed in the active centers of both identical subunits (A and B) of the pyrophosphatase molecule. In subunit B, a water molecule was found between two cobalt ions. It is believed that this water molecule acts as an attacking nucleophile in the enzymatic cleavage of the pyrophosphate bond. It was demonstrated that cobalt ions and a phosphate group occupy only part of the potential binding sites (two chemically identical and crystallographically independent subunits have different binding sites). The arrangement of ligands and the structure of the nucleophile-binding site are discussed in relation to the mechanism of action of the enzyme and the nature of the metal activator.  相似文献   
36.
37.
38.
A generalization of strong regularity around a vertex subset C of a graph Γ, which makes sense even if Γis non-regular, is studied. Such a structure appears, together with a kind of distance-regularity around C , when an spectral bound concerning the so-called predistance polynomial of C is attained. As a main consequence of these results, it is shown that a regular (connected) graph Γwith d + 1 distinct eigenvalues is distance-regular, and its distance- d graph Γ d is strongly regular with parameters a = c , if and only if the number of vertices at distance d from each vertex satisfies an expression which depends only on the order of Γand the different eigenvalues of Γ.  相似文献   
39.
New chromoionophores have been developed, focused on NIR applications so that optode membranes may be used in monolithically integrated optical sensors. The wavelength of maximum absorbance has been estimated for a new model compound by the Pariser-Parr-Pople (PPP) method. Several cyanine type dyes have been tested as membrane chromoionophores. Membrane composition has been altered to overcome solubility problems. In this way, simple pH-sensitive optode membranes have been produced.  相似文献   
40.
The fracture behavior of a core-shell rubber (CSR) modified epoxy is investigated using both fracture mechanics and microscopy tools. The CSR-modified epoxy is found to be toughened via numerous line-array cavitations of the CSR particles, followed by plastic flow of the epoxy matrix. The toughening effect via the above craze-like damage process is found to be as effective as that of the well-known widespread rubber cavitation/matrix shear yielding mechanisms. The conditions for triggering the craze-like damage appear to be both stress state and rubber concentration dependent. The type of rubber tougheners utilized also plays a critical role in triggering this rather unusual craze-like damage in epoxy systems. © 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号