首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9265篇
  免费   462篇
  国内免费   76篇
化学   7695篇
晶体学   44篇
力学   167篇
数学   837篇
物理学   1060篇
  2023年   71篇
  2022年   72篇
  2021年   141篇
  2020年   213篇
  2019年   229篇
  2018年   129篇
  2017年   141篇
  2016年   293篇
  2015年   281篇
  2014年   289篇
  2013年   444篇
  2012年   684篇
  2011年   867篇
  2010年   404篇
  2009年   312篇
  2008年   717篇
  2007年   641篇
  2006年   652篇
  2005年   604篇
  2004年   541篇
  2003年   440篇
  2002年   412篇
  2001年   132篇
  2000年   85篇
  1999年   62篇
  1998年   68篇
  1997年   75篇
  1996年   84篇
  1995年   64篇
  1994年   36篇
  1993年   47篇
  1992年   37篇
  1991年   41篇
  1990年   27篇
  1989年   28篇
  1988年   20篇
  1987年   24篇
  1986年   18篇
  1985年   50篇
  1984年   30篇
  1983年   30篇
  1982年   39篇
  1981年   35篇
  1980年   32篇
  1979年   29篇
  1978年   18篇
  1977年   17篇
  1976年   20篇
  1975年   19篇
  1974年   14篇
排序方式: 共有9803条查询结果,搜索用时 328 毫秒
181.
[structure: see text] Two approaches to the synthesis of the aglycon 120 of polycavernoside A (1) were developed, only one of which was completed. The successful "second-generation" route assembled the aglycon seco acids 102 and 106 via Nozaki-Hiyama-Kishi coupling of aldehyde 70, prepared from methyl (S)-3-hydroxy-2-methylpropionate (72) and (S)-pantolactone (73), with vinyl bromide 71. The latter was obtained from a sequence which commenced from the silyl ether 24 of 3-hydroxypropionaldehyde and entailed cyclization of (Z)-zeta-hydroxy-alpha,beta-unsaturated ester 82. Regioselective Yamaguchi lactonization of trihydroxycarboxylic acids 102 and 106 and subsequent functional-group adjustments led to macrolactone 120, to which the fucopyranosylxylopyranoside moiety was attached. Stille coupling of the glycosidated aglycon 128 with dienylstannane 129 furnished polycavernoside A in a synthesis for which the longest linear sequence was 25 steps. The overall yield to lactone 120 was 4.7%.  相似文献   
182.
Two new macrocyclic crown ethers containing one or two selenium donor atoms have been prepared. Diselena-18-crown-6 (2) was found to transport silver ions through a methylene chloride bulk membrane at about the same rate as the analogous dithia- (3) and diaza-18-crown-6 (4) compounds and transported lead ions about the same as dithia-18-crown-6 but better than diaza-18-crown-6.  相似文献   
183.
The polyoxo rare-earth core (Ln = Y, Gd, and Yb) has been synthesized from the appropriate rare-earth chloride hydrate and K2Se and Se in dmf (dimethylformamide). The cluster core is ligated with a variety of polyselenido chains in addition to a number of dmf molecules. The structure of the Gd8(dmf)13(4-O)(3-OH)12(Se3)(Se4)2(Se5)2 cluster, 1, was determined by X-ray diffraction methods. It is similar to an Eu cluster previously characterized. Two new clusters, Yb8(dmf)11(4-O)(3-OH)12(Se4)2(Se5)2Cl2·dmf, 2, and Y8(dmf)12(4-O)(3-OH)12(Se4)4Cl2·6 dmf, 3, have also been synthesized and characterized. Clusters 2 and 3 have the same octanuclear core of rare-earth atoms as the Gd cluster but contain two chloro ligands in two isomeric conformations in place of the Se 3 2- ring in the Gd cluster. The geometry of the Ln 8 core is described as a triangulated dodecahedron with 3-OH groups capping the 12 faces. A 4-O atom centers the cluster with close contacts to four Ln atoms in an approximate tetrahedral arrangement. Pertinent crystallographic data are: Compound 1, monoclinic, , a= 14.410(3) Å, b = 24.439(5) Å, c = 28.927(6) Å, = 101.05(3)°, V = 9998(3) Å3, T = 106(2) K, Z = 4; Compound 2, orthorhombic, , a = 17.049(9) Å, b = 24.68(1) Å, c = 45.03(2)Å, V = 18,945(16) Å3, T = 153(2) K, Z = 8; Compound 3, monoclinic, C 2h 5 -P21/c, a =18.728(l) Å, b = 29.263( 1) Å, c = 20.548(1) Å, = 90.144(1)°, V = 11,261(1) Å3, T = 153(2) K, Z = 4.  相似文献   
184.
The current rule to predict the enantiopreference of subtilisin toward secondary alcohols is based on the size of the substituents at the stereocenter and implies that the active site contains two differently sized pockets for these substituents. Several experiments are inconsistent with the current rule. First, the X-ray structures of subtilisin show there is only one pocket (the S1' pocket) approximately the size of a phenyl group to bind secondary alcohols. Second, the rule often predicts the incorrect enantiomer for reactions in water. To resolve these contradictions, we refine the current rule to show that subtilisin binds only one substituent of a secondary alcohol and leaves the other in solvent. To test this refined empirical rule, we show that the enantioselectivity of a series of secondary alcohols in water varied linearly with the difference in hydrophobicity (log P/P0) of the substituents. This hydrophobicity difference accounts for the solvation of one substituent in water.  相似文献   
185.
Laser-induced acoustic desorption combined with mass spectrometry has been used to demonstrate that phenyl radicals can attack dinucleoside phosphates at both the sugar and base moieties, that purine bases are more susceptible to the attack than pyrimidine bases, and that the more electrophilic the radical, the more efficient the damage to dinucleoside phosphates.  相似文献   
186.
The adiabatic electron affinities of cyclopentadiene and 10 associated benzannelated derivatives have been predicted with both density functional and Hartree-Fock theory. These systems can also be regarded as benzenoid polycyclic aromatic hydrocarbons (PAHs) augmented with five-membered rings. Like the PAHs, the electron affinities of the present systems generally increase with the number of rings. To unequivocally bind an electron, cyclopentadiene must have at least two conventionally fused benzene rings. 1H-Benz[f]indene, a naphthalene-annulated cyclopentadiene, is predicted to have a zero-point energy corrected adiabatic electron affinity of 0.13 eV. Since the experimental E(A) of naphthalene is negative (-0.19 eV), the five-membered ring appendage contributes to the stability of the naphthalene-derived 1H-benz[f]indene radical anion significantly. The key to binding the electron is a contiguous sequence of fused benzenes, since fluorene, the isomer of 1H-benz[f]indene, with separated six-membered rings, has an electron affinity of -0.07 eV. Each additional benzene ring in the sequence fused to cyclopentadiene increases the electron affinity by 0.15-0.65 eV: the most reliable predictions are cyclopentadiene (-0.63 eV), indene (-0.49 eV), fluorene (-0.07 eV), 1H-benz[f]indene (0.13 eV), 1,2-benzofluorene (0.25 eV), 2,3-benzofluorene (0.26 eV), 12H-dibenzo[b,h]fluorene (0.65 eV), 13H-indeno[1,2-b]anthracene (0.82 eV), and 1H-cyclopenta[b]naphthacene (1.10 eV). In contrast, if the six-membered ring-fusion is across the C(2)-C(3) cyclopentadiene single bond, only a single benzene is needed to bind an electron. The theoretical electron affinity of the resulting molecule, isoindene, is 0.49 eV, and this increases to 1.22 eV for 2H-benz[f]indene. The degree of aromaticity is responsible for this behavior. While the radical anions are stabilized by conjugation, which increases with the size of the system, the regular indenes, like PAHs in general, suffer from the loss of aromatic stabilization in forming their radical anions. While indene is 21 kcal mol(-1) more stable than isoindene, the corresponding radical anion isomers have almost the same energy. Nucleus-independent chemical shift calculations show that the highly aromatic molecules lose almost all aromaticity when an extra electron is present. The radical anions of cyclopentadiene and all of its annulated derivatives have remarkably low C-H bond dissociation energies (only 18-34 kcal mol(-1) for the mono-, bi-, and tricyclics considered). Hydrogen atom loss leads to the restoration of aromaticity in the highly stabilized cyclopentadienyl anion congeners.  相似文献   
187.
Stopped-flow was used to evaluate the methylation and reduction kinetics of the isolated alpha subunit of acetyl-Coenzyme A synthase from Moorella thermoacetica. This catalytically active subunit contains a novel Ni-X-Fe4S4 cluster and a putative unidentified n = 2 redox site called D. The D-site must be reduced for a methyl group to transfer from a corrinoid-iron-sulfur protein, a key step in the catalytic synthesis of acetyl-CoA. The Fe4S4 component of this cluster is also redox active, raising the possibility that it is the D-site or a portion thereof. Results presented demonstrate that the D-site reduces far faster than the Fe4S4 component, effectively eliminating this possibility. Rather, this component may alter catalytically important properties of the Ni center. The D-site is reduced through a pathway that probably does not involve the Fe4S4 component of this active-site cluster.  相似文献   
188.
[structure: see text] The first total synthesis of the rare 7,3'-linked naphthylisoquinoline alkaloid, ancistrocladidine, has been completed. The key feature of the synthesis is the formation of the extremely hindered biaryl linkage by Pinhey-Barton ortho-arylation of a naphthol with an aryllead triacetate. The biaryl aldehyde formed is elaborated in 10 steps to form a 1:1 mixture of ancistrocladidine and its atropisomer. Recrystallization of the mixture afforded ancistrocladidine, which was identical in all respects to the reported data.  相似文献   
189.
A new Cu(II) complex, [Cu(3)(dcp)(2)(H(2)O)(4)](n), with the ligand 3,5-pyrazoledicarboxylic acid monohydrate (H(3)dcp) has been prepared by hydrothermal synthesis, and it crystallizes in the monoclinic space group P2(1)/c with a = 11.633(2) A, b = 9.6005(14) A, c = 6.9230(17) A, beta = 106.01(2) degrees, and Z = 2. In the solid state structure of [Cu(3)(dcp)(2)(H(2)O)(4)](n), trinuclear [Cu(3)(dcp)(2)(H(2)O)(4)] repeating units in which two dcp(3-) ligands chelate the three Cu(II) ions with the central Cu(II) ion, Cu(1) (on an inversion center), link to form infinite 2D sheets via syn-anti equatorial-equatorial carboxylate bridges between Cu(2) atoms in adjacent trimers. These layers are further linked by syn-anti axial-equatorial carboxylate bridging between Cu(1) atoms in adjacent sheets resulting in the formation of a crystallographic 3D network. A detailed analysis of the magnetic properties of [Cu(3)(dcp)(2)(H(2)O)(4)](n) reveals that the dcp(3-) ligand acts to link Cu(II) centers in three different ways with coupling constants orders of magnitude apart in value. In the high temperature region above 50 K, the dominant interaction is strongly antiferromagnetic (J/k(B) = -32 K) within the trimer units mediated by the pyrazolate bridges. Below 20 K, the trimer motif can be modeled as an S = 1/2 unit. These units are coupled to their neighbors by a ferromagnetic interaction mediated by the syn-anti equatorial-equatorial carboxylate bridge. This interaction has been estimated at J(2D)/k(B) = +2.8 K on the basis of a 2D square lattice Heisenberg model. Finally, below 3.2 K a weak antiferromagnetic coupling (J(3D)/k(B) = -0.1 K) which is mediated by the syn-anti axial-equatorial carboxylate bridges between the 2D layers becomes relevant to describe the magnetic (T, H) phase diagram of this material.  相似文献   
190.
NMR studies reveal that complexes Ru(CO)(2)(H)(2)L(2) (L = PMe(3), PMe(2)Ph, and AsMe(2)Ph) can have three geometries, ccc, cct-L, and cct-CO, with equilibrium ratios that are highly dependent on the electronic properties of L; the cct-L form is favored, because the sigma-only hydride donor is located trans to CO rather than L. When L = PMe(3), the ccc form is only visible when p-H(2) is used to amplify its spectral features. In contrast, when L = AsMe(2)Ph, the ccc and cct-L forms are present in similar quantities and, hence, must have similar free energies; for this complex, however, the cct-CO isomer is also detectable. These complexes undergo a number of dynamic processes. For L(2) = dppe, an interchange of the hydride positions within the ccc form is shown to be accompanied by synchronized CO exchange and interchange of the two phosphorus atoms. This process is believed to involve the formation of a trigonal bipyramidal transition state containing an eta(2)-H(2) ligand; in view of the fact that k(HH)/k(DD) is 1.04 and the synchronized rotation when L(2) = dppe, this transition state must contain little H-H bonding character. Pathways leading to isomer interconversion are suggested to involve related structures containing eta(2)-H(2) ligands. The inverse kinetic isotope effect, k(HH)/k(DD) = 0.5, observed for the reductive elimination of dihydrogen from Ru(CO)(2)(H)(2)dppe suggests that substantial H-H bond formation occurs before the H(2) is actually released from the complex. Evidence for a substantial steric influence on the entropy of activation explains why Ru(CO)(2)(H)(2)dppe undergoes the most rapid hydride exchange. Our studies also indicate that the species [Ru(CO)(2)L(2)], involved in the addition of H(2) to form Ru(CO)(2)(H)(2)L(2), must have singlet electron configurations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号