首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2781篇
  免费   147篇
  国内免费   10篇
化学   2319篇
晶体学   12篇
力学   26篇
数学   306篇
物理学   275篇
  2023年   21篇
  2022年   36篇
  2021年   34篇
  2020年   51篇
  2019年   41篇
  2018年   28篇
  2017年   25篇
  2016年   101篇
  2015年   103篇
  2014年   91篇
  2013年   143篇
  2012年   212篇
  2011年   236篇
  2010年   140篇
  2009年   85篇
  2008年   186篇
  2007年   171篇
  2006年   157篇
  2005年   168篇
  2004年   162篇
  2003年   127篇
  2002年   114篇
  2001年   68篇
  2000年   37篇
  1999年   34篇
  1998年   27篇
  1997年   32篇
  1996年   29篇
  1995年   28篇
  1994年   18篇
  1993年   18篇
  1992年   21篇
  1991年   12篇
  1990年   14篇
  1989年   11篇
  1988年   23篇
  1987年   15篇
  1986年   8篇
  1985年   13篇
  1984年   18篇
  1983年   5篇
  1982年   6篇
  1981年   14篇
  1980年   4篇
  1979年   4篇
  1978年   13篇
  1977年   4篇
  1976年   4篇
  1975年   3篇
  1969年   5篇
排序方式: 共有2938条查询结果,搜索用时 15 毫秒
981.
Implementation of an uncomplicated SPE process for the rapid extraction and preconcentration of the alkaloids, colchicine, strychnine, aconitine, and nicotine, from water, apple juice, and nonfat milk samples is presented. When coupled to analysis via micellar EKC (MEKC), the total analysis time per sample was less than 15 min for the water and juice samples and less than 20 min for the milk. The SPE process allowed for anywhere from a three to a fourteen-fold improvement in the LOD for each alkaloid when compared to detecting the alkaloids in a nontreated water sample matrix. Following SPE, the LODs for colchicine, strychnine, and nicotine were sufficient to meet levels from 150 to 5000 times more dilute than the LD(50) for a 50 kg individual drinking 12 oz of a contaminated beverage. Aconitine, on the other hand, was detected at approximately the LD(50) level. The percent recoveries for the SPE ranged from 37% to as high as 99%. Nicotine attained the highest recovery efficiencies, followed by colchicine, and finally, aconitine and strychnine, which were nearly identical. The greatest recovery efficiencies were achieved from apple juice and water, whereas nonfat milk yielded the lowest.  相似文献   
982.
The design of novel stationary phases is a permanent demanding challenge in chromatographic separation science to enable analysis with enhanced selectivity, specificity and speed. Therefore, the characterisation of chemical and physical properties is next to calculation of chromatographic parameters essential. Conventionally, chemical parameters including surface coverage are determined by burning combustion or frontal analysis, physical parameters including particle size, pore size, pore volume and surface area are determined by SEM, mercury intrusion porosimetry (MIP) and Brunauer-Emmett-Teller (BET). All these methods are time consuming, invasive and require besides special equipment some special trained laboratory staff. Therefore, we introduced near-infrared spectroscopy (NIRS) as a noninvasive, easy-to-handle technology with wavenumber ranging from 4000 to 10,000 cm(-1) enabling analysis within only a few seconds at higher precision than the conventional methods. Investigated materials comprise porous and nonporous silica gel, carbon-based nanomaterials (fullerenes), polymer beads and monoliths. Different carriers themselves and their kind of derivatisations (RP, normal-phase, ion-exchanger, IMAC (immobilised metal affinity chromatography), affinity) can be determined by applying principal component analysis (PCA) of recorded spectra. Partial least square regression (PLSR) enables the determination of particle size, pore size, pore volume, porosity, total porosity and surface area with one single measurement. For the optimised design of well-defined polymer beads and monoliths, real-time in situ monitoring to control, e. g. particle and pore sizes as well as monomer content during the polymerisation process, can be extremely helpful. In this article, the advantages of this fast, noninvasive high-throughput NIRS methods are summarised, discussed in detail and different applications of the individual characterised materials are shown.  相似文献   
983.
The formation of C−C bonds via the allylation of carbonyl compounds has been widely applied in total syntheses. Amongst the many possible strategies, the Barbier-type allylation in aqueous media has received only moderate attention over the last decades despite its mild reaction conditions. In this study, we investigated the indium (In0) and zinc (Zn0) mediated Barbier allylation reaction to efficiently synthesize base-labile 3-methylene-5-hydroxy containing building blocks for natural product total synthesis. As model study we selected the allylation of lipidic undecanal with ethyl 3-(bromomethyl)but-3-enoate in the presence of either Zn0 or In0 and investigated the effects of additives on yields and selectivities. We then applied the optimized reaction conditions to sterically demanding allyl bromides and functionalized aromatic aldehydes yielding eleven new homoallylic alcohols, one of which was further transformed via oxidation and reduction sequences.  相似文献   
984.
We present infrared predissociation spectra of C2N(H2) and C 3N(H2) in the 300–1850 cm−1 range. Measurements were performed using the FELion cryogenic ion trap end user station at the Free Electron Lasers for Infrared eXperiments (FELIX) laboratory. For C2N(H2), we detected the CCN bending and CC−N stretching vibrations. For the C3N(H2) system, we detected the CCN bending, the CC−CN stretching, and multiple overtones and/or combination bands. The assignment and interpretation of the presented experimental spectra is validated by calculations of anharmonic spectra within the vibrational configuration interaction (VCI) approach, based on potential energy surfaces calculated at explicitly correlated coupled cluster theory (CCSD(T)-F12/cc-pVTZ−F12). The H2 tag acts as an innocent spectator, not significantly affecting the C2,3N bending and stretching mode positions. The recorded infrared predissociation spectra can thus be used as a proxy for the vibrational spectra of the bare anions.  相似文献   
985.
Ochratoxin A (OTA) is a mycotoxin produced by Aspergillus and Penicillium that is widely found as a contaminant of food products. The toxin is a renal carcinogen in male rats, the cause of mycotoxicoses in pigs and has been associated with chronic human kidney diseases. Bioactivation has been implicated in OTA-mediated toxicity, although inconsistent results have been reported, due, in part, to the difficulty in detecting OTA metabolites in vivo. Liquid chromatography (LC) coupled with fluorescence detection (FLD) is the most widely used analytical detection method for OTA. Under acidic conditions the toxin generates blue fluorescence (465 nm) that is due to an excited state intramolecular proton transfer (ESIPT) process that generates an emissive keto tautomer. Disruption of this ESIPT process quenches fluorescence intensity and causes a blue shift in emission maxima. The aim of the present study was to determine the impact of the C5-chlorine atom, the lactone moiety and the amide bond on OTA fluorescence and derive optical parameters for OTA metabolites that have been detected in vitro. Our results highlight the limitations of LC/FLD for OTA metabolites that do not undergo ESIPT. For emissive derivatives, our absorption and emission data improves the sensitivity of LC/FLD (3-4-fold increase in the limit of detection (LOD)) for OTA analogues bearing a C5-OH group, such as the hydroquinone (OTHQ) metabolite and the glutathione conjugate of OTA (OTA-GSH). This increased sensitivity may facilitate the detection of OTA metabolites bearing a C5-OH group in biological fluids and enhance our understanding of OTA-mediated toxicity.  相似文献   
986.
A simple high-performance liquid chromatographic (HPLC) method was developed for the simultaneous determination of cefepime and cefazolin in human plasma and dialysate. For component separation, the method utilized a C18 column with an aqueous mobile phase of dibasic potassium hydrogen phosphate (pH 7.0) and methanol gradient at a flow rate of 1 mL min−1. The method demonstrated linearity from 2.0 to 100.0 μg mL−1 (r > 0.999) with detection limit of 1 μg mL−1 for both cefepime and cefazolin. The method was utilized for evaluation of plasma and dialysate samples in a clinical study evaluating the dialyzer clearance of cefepime and cefazolin using high-flux hemodialysis with varying blood flow rates in chronic kidney failure patients undergoing hemodialysis and peritoneal dialysis treatment.  相似文献   
987.
A rapid negative ion ESI high-performance capillary liquid chromatography-mass spectrometry method was developed to identify and quantify flavonoids (e.g., flavanols, flavonols, flavanones and glycosides). Fifteen standards and two varieties of almond skin extract powder (Carmel and Nonpareil) were used to demonstrate the chromatographic separation, reproducibility and accuracy of the method that employed a 150 mm x 0.3 mm ChromXP 3C18-EP-120 column. All standards eluted in less than 10 min, providing a 9-12x reduction in analysis time compared to existing methods (90-120 min). However, isomers (e.g., catechin/epicatechin and galactosides/glucosides) were not resolved and, therefore, identified and quantified collectively. RSDs for retention time and peak area reproducibility (mass spectrometry data) were <0.5% and <5.0%, respectively. Peak area reproducibility was greatly improved (from a RSD>10%) after the implementation of a low-flow metal needle in the ESI source. Quantitation by mass spectrometry also afforded a % error less than 5% for most compounds.  相似文献   
988.
The title compounds 10 and 11 were prepared by a one‐step procedure from 1,4‐benzoquinone ( 4 ) and pyridine‐2,4,6‐triamine ( 5 ) via an extension of the Nenitzescu reaction  相似文献   
989.
Coarse grained (CG) models are widely used in studying peptide self-assembly and nanostructure formation. One of the recurrent challenges in CG modeling is the problem of limited transferability, for example to different thermodynamic state points and system compositions. Understanding transferability is generally a prerequisite to knowing for which problems a model can be reliably used and predictive. For peptides, one crucial transferability question is whether a model reproduces the molecule's conformational response to a change in its molecular environment. This is of particular importance since CG peptide models often have to resort to auxiliary interactions that aid secondary structure formation. Such interactions take care of properties of the real system that are per se lost in the coarse graining process such as dihedral-angle correlations along the backbone or backbone hydrogen bonding. These auxiliary interactions may then easily overstabilize certain conformational propensities and therefore destroy the ability of the model to respond to stimuli and environment changes, i.e. they impede transferability. In the present paper we have investigated a short peptide with amphiphilic EALA repeats which undergoes conformational transitions between a disordered and a helical state upon a change in pH value or due to the presence of a soft apolar/polar interface. We designed a base CG peptide model that does not carry a specific (backbone) bias towards a secondary structure. This base model was combined with two typical approaches of ensuring secondary structure formation, namely a Cα-Cα-Cα-Cα pseudodihedral angle potential or a virtual site interaction that mimics hydrogen bonding. We have investigated the ability of the two resulting CG models to represent the environment-induced conformational changes in the helix-coil equilibrium of EALA. We show that with both approaches a CG peptide model can be obtained that is environment-transferable and that correctly represents the peptide's conformational response to different stimuli compared to atomistic reference simulations. The two types of auxiliary interactions lead to different kinetic behavior as well as to different structural properties for fully formed helices and folding intermediates, and we discuss the advantages and disadvantages of these approaches.  相似文献   
990.
High-throughput screening (HTS) is an effective method for lead and probe discovery that is widely used in industry and academia to identify novel chemical matter and to initiate the drug discovery process. However, HTS can be time consuming and costly and the use of subsets as an efficient alternative to screening entire compound collections has been investigated. Subsets may be selected on the basis of chemical diversity, molecular properties, biological activity diversity or biological target focus. Previously, we described a novel form of subset screening: plate-based diversity subset (PBDS) screening, in which the screening subset is constructed by plate selection (rather than individual compound cherry-picking), using algorithms that select for compound quality and chemical diversity on a plate basis. In this paper, we describe a second-generation approach to the construction of an updated subset: PBDS2, using both plate and individual compound selection, that has an improved coverage of the chemical space of the screening file, whilst only selecting the same number of plates for screening. We describe the validation of PBDS2 and its successful use in hit and lead discovery. PBDS2 screening became the default mode of singleton (one compound per well) HTS for lead discovery in Pfizer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号