首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16066篇
  免费   724篇
  国内免费   63篇
化学   11537篇
晶体学   91篇
力学   396篇
数学   2142篇
物理学   2687篇
  2023年   109篇
  2022年   115篇
  2021年   232篇
  2020年   317篇
  2019年   346篇
  2018年   161篇
  2017年   183篇
  2016年   497篇
  2015年   523篇
  2014年   564篇
  2013年   800篇
  2012年   1014篇
  2011年   1068篇
  2010年   668篇
  2009年   576篇
  2008年   868篇
  2007年   826篇
  2006年   772篇
  2005年   749篇
  2004年   606篇
  2003年   502篇
  2002年   484篇
  2001年   261篇
  2000年   227篇
  1999年   215篇
  1998年   204篇
  1997年   216篇
  1996年   197篇
  1995年   174篇
  1994年   162篇
  1993年   196篇
  1992年   133篇
  1991年   125篇
  1990年   110篇
  1989年   129篇
  1988年   94篇
  1987年   98篇
  1986年   101篇
  1985年   115篇
  1984年   107篇
  1983年   96篇
  1982年   100篇
  1981年   117篇
  1980年   110篇
  1979年   95篇
  1978年   108篇
  1977年   83篇
  1976年   118篇
  1975年   104篇
  1973年   95篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
21.
Linear polyethylene oxides with molecular weightsM w of 1665 and 10170 confined in pores with variable diameters in a solid methacrylate matrix were studied by proton field-cycling nuclear magnetic resonance relaxometry. The pore diameter was varied in the range of 9–57 nm. In all cases, the spin-lattice relaxation time shows a frequency dependence close toT 1∞ v3/4 in the range ofv=3·10?1-2·101 MHz as predicted by the tube-reptation model. This protonT 1 dispersion essentially reproduces that found in a previous deuteron study (R. Kimmich, R.-O. Seitter, U. Beginn, M. Möller, N. Fatkullin: Chem. Phys. Lett. 307, 147, 1999). As a feature particularly characteristic for reptation, this finding suggests that reptation is the dominating chain dynamics mechanism under pore confinement in the corresponding time range. The absolute values of the spin-lattice relaxation times indicate that the diameter of the effective tubes in which reptation occurs is much smaller than the pore diameters on the time scale of spin-lattice relaxation experimens. An estimation leads to a valued *~0.5 nm. The impenetrability of the solid pore walls, the uncrossability of polymer chains (“excluded volume”) and the low value of the compressibility in polymer melts create the “corset effect” which reduces the lateral motions of polymer chains to a microscopic scale of only a few tenths of a nanometer.  相似文献   
22.
Investigation of the methanol extract of the roots of Gnidia involucrata (Thymelaeaceae) led to the isolation and characterization of two new 3,8″‐biflavonoid diastereoisomers, named GB‐4 ( 6a ) and GB‐4a ( 6b ). Their absolute configurations were determined in mixture by on‐line LC/CD measurements, which also allowed the revision of absolute configurations of the biflavanoids GB‐1 and GB‐2, and the configurational assignment of GB‐3.  相似文献   
23.
24.
We present some reflections on the application of the Lagrangian formalism for continuous media locally uniform subjected to internal irreversible evolutions. The Lagrangian density, defined as the time derivative of a non-equilibrium thermodynamic potential, [Thermodynamics of Relaxation Processes using Internal variables within a Lagrange-formalism. P. Germain’s Anniversary Volume 2000. Contiuum Thermomechanics: the Art and Science of Modeling Matter’s Behaviour, 2000], contains all the symmetry properties of the system. The generalised Lagrange co-ordinates correspond to the state and internal variables of the time derivative of the generalised Gibbs potential. The latter being used within the framework of the De Donder’s method, must also account for the memory effect of the physical medium.This first part is devoted to the thermodynamic framework called the distribution of non-linear relaxations approach (DNLR) developed by C. Cunat on the basis of the generalised Gibbs’ relation.  相似文献   
25.
Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl-l-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H–1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 (S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 (δ = 8 ppm) and H4 (δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 − 3) × 10−4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 − 137) × 10−4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model solutions of histidine and N-acetyl-l-aspartate (NAA) enabled the assignment of an additional signal component at δ = 8 ppm of Cs in vivo to the amide group at the peptide bond. The visibility of this proton could result from hydrogen bonding which would agree with the anticipated stronger motional restriction of Cs. Referring to the observation that all dipolar-coupled multiplets resolved in localized in vivo 1H NMR spectra of human m. gastrocnemius collapse simultaneously when the fibre structure is tilted towards the magic angle (θ ≈ 55°), a common model for molecular confinement in muscle tissue is proposed on the basis of an interaction of the studied metabolites with myocellular membrane phospholipids.  相似文献   
26.
Coupling constants of nuclear spin systems can be determined from phase modulation of multiplet resonances. Strongly coupled systems such as citrate in prostatic tissue exhibit a more complex modulation than AX connectivities, because of substantial mixing of quantum states. An extreme limit is the coupling of n isochronous spins (An system). It is observable only for directly connected spins like the methylene protons of creatine and phosphocreatine which experience residual dipolar coupling in intact muscle tissue in vivo. We will demonstrate that phase modulation of this “pseudo-strong” system is quite simple compared to those of AB systems. Theory predicts that the spin-echo experiment yields conditions as in the case of weak interactions, in particular, the phase modulation depends linearly on the line splitting and the echo time.  相似文献   
27.
28.
Kinetic models for chemotaxis, nonlinearly coupled to a Poisson equation for the chemo-attractant density, are considered. Under suitable assumptions on the turning kernel (including models introduced by Othmer, Dunbar and Alt), convergence in the macroscopic limit to a drift-diffusion model is proven. The drift-diffusion models derived in this way include the classical Keller-Segel model. Furthermore, sufficient conditions for kinetic models are given such that finite-time-blow-up does not occur. Examples are given satisfying these conditions, whereas the macroscopic limit problem is known to exhibit finite-time-blow-up. The main analytical tools are entropy techniques for the macroscopic limit as well as results from potential theory for the control of the chemo-attractant density.Present address: Centro de Matemática e Aplicações Fundamentais, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649-003, Lisboa, Portugal  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号