首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   16篇
  国内免费   1篇
化学   140篇
力学   1篇
物理学   11篇
  2023年   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   11篇
  2014年   10篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   10篇
  2006年   8篇
  2005年   4篇
  2004年   11篇
  2003年   6篇
  2002年   17篇
  2001年   15篇
  1996年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1985年   2篇
  1984年   2篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   4篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1970年   1篇
  1968年   1篇
排序方式: 共有152条查询结果,搜索用时 15 毫秒
141.
Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes.  相似文献   
142.
Several new donor–acceptor adducts of niobium and tantalum pentaazide with N‐donor ligands have been prepared from the pentafluorides by fluoride–azide exchange with Me3SiN3 in the presence of the corresponding donor ligand. With 2,2′‐bipyridine and 1,10‐phenanthroline, the self‐ionization products [MF4(2,2′‐bipy)2]+[M(N3)6]?, [M(N3)4(2,2′‐bipy)2]+[M(N3)6]? and [M(N3)4(1,10‐phen)2]+[M(N3)6]? were obtained. With the donor ligands 3,3′‐bipyridine and 4,4′‐bipyridine the neutral pentaazide adducts (M(N3)5)2?L (M=Nb, Ta; L=3,3′‐bipy, 4,4′‐bipy) were formed.  相似文献   
143.
Fluoride‐azide exchange reactions of Me3SiN3 with MnF2 and MnF3 in acetonitrile resulted in the isolation of Mn(N3)2 and Mn(N3)3?CH3CN, respectively. While Mn(N3)2 forms [PPh4]2[Mn(N3)4] and (bipy)2Mn(N3)2 upon reaction with PPh4N3 and 2,2′‐bipyridine (bipy), respectively, the manganese(III) azide undergoes disproportionation and forms mixtures of [PPh4]2[Mn(N3)4] and [PPh4]2[Mn(N3)6], as well as (bipy)2Mn(N3)2 and (bipy)Mn(N3)4. Neat and highly sensitive Cs2[Mn(N3)6] was obtained through the reaction of Cs2MnF6 with Me3SiN3 in CH3CN.  相似文献   
144.
Heats of formation at 0 and 298 K are predicted for PF3, PF5, PF3O, SF2, SF4, SF6, SF2O, SF2O2, and SF4O as well as a number of radicals derived from these stable compounds on the basis of coupled cluster theory [CCSD(T)] calculations extrapolated to the complete basis set limit. In order to achieve near chemical accuracy (+/-1 kcal/mol), additional corrections were added to the complete basis set binding energies based on frozen core coupled cluster theory energies: a correction for core-valence effects, a correction for scalar relativistic effects, a correction for first-order atomic spin-orbit effects, and vibrational zero-point energies. The calculated values substantially reduce the error limits for these species. A detailed comparison of adiabatic and diabatic bond dissociation energies (BDEs) is made and used to explain trends in the BDEs. Because the adiabatic BDEs of polyatomic molecules represent not only the energy required for breaking a specific bond but also contain any reorganization energies of the bonds in the resulting products, these BDEs can be quite different for each step in the stepwise loss of ligands in binary compounds. For example, the adiabatic BDE for the removal of one fluorine ligand from the very stable closed-shell SF6 molecule to give the unstable SF5 radical is 2.8 times the BDE needed for the removal of one fluorine ligand from the unstable SF5 radical to give the stable closed-shell SF4 molecule. Similarly, the BDE for the removal of one fluorine ligand from the stable closed-shell PF3O molecule to give the unstable PF2O radical is higher than the BDE needed to remove the oxygen atom to give the stable closed-shell PF3 molecule. The same principles govern the BDEs of the phosphorus fluorides and the sulfur oxofluorides. In polyatomic molecules, care must be exercised not to equate BDEs with the bond strengths of given bonds. The measurement of the bond strength or stiffness of a given bond represented by its force constant involves only a small displacement of the atoms near equilibrium and, therefore, does not involve any reorganization energies, i.e., it may be more appropriate to correlate with the diabatic product states.  相似文献   
145.
The thermal instability of alpha-fluoroalcohols is generally attributed to a unimolecular 1,2-elimination of HF, but the barrier to intramolecular HF elimination from CF3OH is predicted to be 45.1 +/- 2 kcal/mol. The thermochemical parameters of trifluoromethanol were calculated using coupled-cluster theory (CCSD(T)) extrapolated to the complete basis set limit. High barriers of 42.9, 43.1, and 45.0 kcal/mol were predicted for the unimolecular decompositions of CH2FOH, CHF2OH, and CF3OH, respectively. These barriers are lowered substantially if cyclic H-bonded dimers of CF3OH with complexation energies of approximately 5 kcal/mol are involved. A six-membered ring dimer has an energy barrier of 28.7 kcal/mol and an eight-membered dimer has an energy barrier of 32.9 kcal/mol. Complexes of CF3OH with HF lead to strong H-bonded dimers, trimers and tetramers with complexation energies of approximately 6, 11, and 16 kcal/mol, respectively. The dimer, CH3OH:HF, and the trimers, CF3OH:2HF and (CH3OH)2:HF, have decomposition energy barriers of 26.7, 20.3, and 22.8 kcal/mol, respectively. The tetramer (CH3OH:HF)2 gives rise to elimination of two HF molecules with a barrier of 32.5 kcal/mol. Either CF3OH or HF can act as catalysts for HF-elimination via an H-transfer relay. Because HF is one of the decomposition products, the decomposition reactions become autocatalytic. If the energies due to complexation for the CF3OH-HF adducts are not dissipated, the effective barriers to HF elimination are lowered from approximately 20 to approximately 9 kcal/mol, which reconciles the computational results with the experimentally observed stabilities.  相似文献   
146.
The binary group 15 polyazides As(N(3))(3), Sb(N(3))(3), and Bi(N(3))(3) were stabilized by either anion or donor-acceptor adduct formation. Crystal structures are reported for [Bi(N(3))(4)](-), [Bi(N(3))(5)](2-), [bipy·Bi(N(3))(5)](2-), [Bi(N(3))(6)](3-), bipy·As(N(3))(3), bipy·Sb(N(3))(3), and [(bipy)(2)·Bi(N(3))(3)](2). The lone valence electron pair on the central atom of these pnictogen(+III) compounds can be either sterically active or inactive. The [Bi(N(3))(5)](2-) anion possesses a sterically active lone pair and a monomeric pseudo-octahedral structure with a coordination number of 6, whereas its 2,2'-bipyridine adduct exhibits a pseudo-monocapped trigonal prismatic structure with CN 7 and a sterically inactive lone pair. Because of the high oxidizing power of Bi(+V), reactions aimed at Bi(N(3))(5) and [Bi(N(3))(6)](-) resulted in the reduction to bismuth(+III) compounds by [N(3)](-). The powder X-ray diffraction pattern of Bi(N(3))(3) was recorded at 298 K and is distinct from that calculated for Sb(N(3))(3) from its single-crystal data at 223 K. The [(bipy)(2)·Bi(N(3))(3)](2) adduct is dimeric and derived from two BiN(8) square antiprisms sharing an edge consisting of two μ(1,1)-bridging N(3) ligands and with bismuth having CN 8 and a sterically inactive lone pair. The novel bipy·As(N(3))(3) and bipy·Sb(N(3))(3) adducts are monomeric and isostructural and contain a sterically active lone pair on their central atom and a CN of 6. A systematic quantum chemical analysis of the structures of these polyazides suggests that the M06-2X density functional is well suited for the prediction of the steric activity of lone pairs in main-group chemistry. Furthermore, it was found that the solid-state structures can strongly differ from those of the free gas-phase species or those in solutions and that lone pairs that are sterically inactive in a chemical surrounding can become activated in the free isolated species.  相似文献   
147.
The new harmonic inversion noise reduction method was applied to (15)N natural-abundance NMR spectroscopy and N(5)SbF(6). This method is superior to conventional Fourier transform methods for processing FIDs and permits the detection of natural abundance (15)N NMR signals with significantly reduced numbers of scans and improved sensitivity. In addition to the confirmation of the previously reported chemical shifts for N(5)(+), the one bond coupling between N(beta) and N(gamma) could be observed for the first time. Its absolute value is compared to known coupling constants of other covalent azides and the free azide ion.  相似文献   
148.
Oxygen-balanced energetic ionic liquid   总被引:2,自引:0,他引:2  
  相似文献   
149.
150.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号