首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2361篇
  免费   84篇
  国内免费   23篇
化学   1462篇
晶体学   7篇
力学   42篇
数学   400篇
物理学   557篇
  2023年   9篇
  2022年   21篇
  2021年   29篇
  2020年   38篇
  2019年   29篇
  2018年   30篇
  2017年   36篇
  2016年   61篇
  2015年   59篇
  2014年   62篇
  2013年   121篇
  2012年   186篇
  2011年   176篇
  2010年   123篇
  2009年   110篇
  2008年   158篇
  2007年   164篇
  2006年   167篇
  2005年   203篇
  2004年   138篇
  2003年   124篇
  2002年   115篇
  2001年   19篇
  2000年   23篇
  1999年   15篇
  1998年   15篇
  1997年   15篇
  1996年   33篇
  1995年   17篇
  1994年   17篇
  1993年   19篇
  1992年   11篇
  1991年   5篇
  1990年   8篇
  1989年   12篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   12篇
  1984年   10篇
  1983年   10篇
  1982年   9篇
  1981年   10篇
  1980年   5篇
  1979年   7篇
  1977年   4篇
  1976年   3篇
  1973年   5篇
  1972年   3篇
  1970年   2篇
排序方式: 共有2468条查询结果,搜索用时 15 毫秒
121.
122.
123.
Methyl acetoacetate and 2,4-pentanedione dianions were condensed with aldehydes and ketones to afford a 1,3,5-trioxygenated carboskeleton. Intramolecular cyclization of the aldol adducts delivered the title compounds in good yield.  相似文献   
124.
The introduction of electron rich and sterically hindered ligands has made otherwise inert aryl chlorides and hetero aryl chlorides viable coupling partners in palladium-catalyzed Suzuki-Miyaura, Sonogashira, Stille and other types of cross-coupling reactions. This review gives highlights of cross-coupling of aryl chlorides employing in situ generated palladium catalytic systems.  相似文献   
125.
Multiple conformations separated by high‐energy barriers represent a challenging problem in free‐energy calculations due to the difficulties in achieving adequate sampling. We present an application of thermodynamic integration (TI) in conjunction with the local elevation umbrella sampling (LE/US) method to improve convergence in alchemical free‐energy calculations. TI‐LE/US was applied to the guanosine triphosphate (GTP) to 8‐Br‐GTP perturbation, molecules that present high‐energy barriers between the anti and syn states and that have inverted preferences for those states. The convergence and reliability of TI‐LE/US was assessed by comparing with previous results using the enhanced‐sampling one‐step perturbation (OSP) method. A linear interpolation of the end‐state biasing potentials was sufficient to dramatically improve sampling along the chosen reaction coordinate. Conformational free‐energy differences were also computed for the syn and anti states and compared to experimental and theoretical results. Additionally, a coupled OSP with LE/US was carried out, allowing the calculation of conformational and alchemical free energies of GTP and 8‐substituted GTP analogs. © 2013 Wiley Periodicals, Inc.  相似文献   
126.
First principles electronic structure calculations are typically performed in terms of molecular orbitals (or bands), providing a straightforward theoretical avenue for approximations of increasing sophistication, but do not usually provide any qualitative chemical information about the system. We can derive such information via post‐processing using natural bond orbital (NBO) analysis, which produces a chemical picture of bonding in terms of localized Lewis‐type bond and lone pair orbitals that we can use to understand molecular structure and interactions. We present NBO analysis of large‐scale calculations with the ONETEP linear‐scaling density functional theory package, which we have interfaced with the NBO 5 analysis program. In ONETEP calculations involving thousands of atoms, one is typically interested in particular regions of a nanosystem whilst accounting for long‐range electronic effects from the entire system. We show that by transforming the Non‐orthogonal Generalized Wannier Functions of ONETEP to natural atomic orbitals, NBO analysis can be performed within a localized region in such a way that ensures the results are identical to an analysis on the full system. We demonstrate the capabilities of this approach by performing illustrative studies of large proteins—namely, investigating changes in charge transfer between the heme group of myoglobin and its ligands with increasing system size and between a protein and its explicit solvent, estimating the contribution of electronic delocalization to the stabilization of hydrogen bonds in the binding pocket of a drug‐receptor complex, and observing, in situ, the n → π* hyperconjugative interactions between carbonyl groups that stabilize protein backbones. © 2012 Wiley Periodicals, Inc.  相似文献   
127.
T-2 and HT-2 toxins are mycotoxins produced by several Fusarium species that are commonly found in various cereal grains, including oats, barley, wheat and maize. Intake estimates indicate that the presence of these mycotoxins in the diet can be of concern for public health. In this work, the inclusion processes occurring between fluorescent anthracene-derivatives of T-2 and HT-2 toxins and different cyclodextrin (CD) molecules were investigated in aqueous solutions by means of UV–Vis absorption, fluorescence emission and dynamic light scattering. Binding constant values and chemico-physical parameters were calculated. It was found that β-CDs give stronger inclusion reactions with both T-2 and HT-2 derivatives, as stated by important emission intensity increments. Such interactions were found to be fundamentally enthalpy-driven. Among β-CDs, the effect of the methylation at hydroxyl groups was tested: as a result, the di-methyl form of β-CD was found to induce the best fluorescence intensity enhancements.  相似文献   
128.
Pressure‐induced charge transfer from Bi to Ir/Ru is observed in the hexagonal perovskites Ba3+nBiM2+nO9+3n (n=0,1; M=Ir,Ru). These compounds show first‐order, circa 1 % volume contractions at room temperature above 5 GPa, which are due to the large reduction in the effective ionic radius of Bi when the 6s shell is emptied on oxidation, compared to the relatively negligible effect of reduction on the radii of Ir or Ru. They are the first such transitions involving 4d and 5d compounds, and they double the total number of cases known. Ab initio calculations suggest that magnetic interactions through very short (ca. 2.6 Å) M M bonds contribute to the finely balanced nature of their electronic states.  相似文献   
129.
The calculation of binding free energies of charged species to a target molecule is a frequently encountered problem in molecular dynamics studies of (bio‐)chemical thermodynamics. Many important endogenous receptor‐binding molecules, enzyme substrates, or drug molecules have a nonzero net charge. Absolute binding free energies, as well as binding free energies relative to another molecule with a different net charge will be affected by artifacts due to the used effective electrostatic interaction function and associated parameters (e.g., size of the computational box). In the present study, charging contributions to binding free energies of small oligoatomic ions to a series of model host cavities functionalized with different chemical groups are calculated with classical atomistic molecular dynamics simulation. Electrostatic interactions are treated using a lattice‐summation scheme or a cutoff‐truncation scheme with Barker–Watts reaction‐field correction, and the simulations are conducted in boxes of different edge lengths. It is illustrated that the charging free energies of the guest molecules in water and in the host strongly depend on the applied methodology and that neglect of correction terms for the artifacts introduced by the finite size of the simulated system and the use of an effective electrostatic interaction function considerably impairs the thermodynamic interpretation of guest‐host interactions. Application of correction terms for the various artifacts yields consistent results for the charging contribution to binding free energies and is thus a prerequisite for the valid interpretation or prediction of experimental data via molecular dynamics simulation. Analysis and correction of electrostatic artifacts according to the scheme proposed in the present study should therefore be considered an integral part of careful free‐energy calculation studies if changes in the net charge are involved. © 2013 The Authors Journal of Computational Chemistry Published by Wiley Periodicals, Inc.  相似文献   
130.
Förster resonance energy transfer (FRET) measurements are widely used to investigate (bio)molecular interactions or/and association. FRET efficiencies, the primary data obtained from this method, give, in combination with the common assumption of isotropic chromophore orientation, detailed insight into the lengthscale of molecular phenomena. This study illustrates the application of a FRET efficiency restraint during classical atomistic molecular dynamics simulations of a mutant mastoparan X peptide in either water or 7 M aqueous urea. The restraint forces acting on the donor and acceptor chromophores ensure that the sampled peptide configurational ensemble satisfies the experimental primary data by modifying interchromophore separation and chromophore transition dipole moment orientations. By means of a conformational cluster analysis, it is seen that indeed different configurational ensembles may be sampled without and with application of the restraint. In particular, while the FRET efficiency and interchromophore distances monitored in an unrestrained simulation may differ from the experimentally‐determined values, they can be brought in agreement with experimental data through usage of the FRET efficiency restraining potential. Furthermore, the present results suggest that the assumption of isotropic chromophore orientation is not always justified. The FRET efficiency restraint allows the generation of configurational ensembles that may not be accessible with unrestrained simulations, and thereby supports a meaningful interpretation of experimental FRET results in terms of the underlying molecular degrees of freedom. Thus, it offers an additional tool to connect the realms of computer and wet‐lab experimentation. © 2014 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号