首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   812篇
  免费   23篇
  国内免费   3篇
化学   440篇
晶体学   6篇
力学   26篇
数学   57篇
物理学   309篇
  2023年   15篇
  2022年   13篇
  2021年   22篇
  2020年   25篇
  2019年   25篇
  2018年   19篇
  2017年   18篇
  2016年   27篇
  2015年   12篇
  2014年   28篇
  2013年   42篇
  2012年   30篇
  2011年   40篇
  2010年   34篇
  2009年   25篇
  2008年   35篇
  2007年   37篇
  2006年   39篇
  2005年   34篇
  2004年   35篇
  2003年   25篇
  2002年   12篇
  2001年   20篇
  2000年   13篇
  1999年   8篇
  1998年   4篇
  1997年   6篇
  1995年   7篇
  1994年   10篇
  1993年   9篇
  1992年   8篇
  1991年   12篇
  1990年   13篇
  1989年   9篇
  1988年   13篇
  1987年   10篇
  1986年   7篇
  1985年   10篇
  1984年   11篇
  1983年   6篇
  1982年   5篇
  1981年   10篇
  1980年   13篇
  1979年   3篇
  1978年   7篇
  1977年   5篇
  1976年   3篇
  1974年   5篇
  1973年   3篇
  1933年   3篇
排序方式: 共有838条查询结果,搜索用时 78 毫秒
41.
Several high‐energy‐density strained polycyclic compounds nitromethyl‐l,3‐bishomocubane (NMBHC), nitromethylene‐1,3‐bishomocubane (NMyBHC), and bis(nitromethyl)‐1,3‐bishomocubane (DNTMBHC), which were synthesized for the first time from bishomocubanone, hold potential for application as standalone fuels in liquid bipropellant systems or as additives in liquid and solid propellant formulations. DFT analysis at the B3LYP/6‐31G(d) level of theory was employed to optimize the geometries of the compounds and to determine their densities, heats of formation, and various thermodynamic properties. The density specific impulse, determined by using equilibrium thermodynamics, demonstrated an improvement of 75 s for NMBHC and NMyBHC over standard hydrocarbons. The specific impulse with ammonium perchlorate showed an improvement of 25–30 s over hydroxy‐terminated polybutadiene. Thermogravimetric analysis revealed that NMBHC, NMyBHC, and DNTMBHC evaporated readily with activation energies of 58.8, 69.2, and 74.5 kJ mol?1, respectively.  相似文献   
42.
The voluminous utilization and application of plate and frame heat exchangers (PFHE) in many industries has accelerated the consumer and designer both to optimize exchanger total cost. Over the last few years, several old and new generation algorithms were employed and exploited to optimize PFHE cost. This study explores the application and performance of three new-generation algorithms Big Bang-Big Crunch (BBBC), Grey Wolf Optimizer (GWO), and Water Evaporation Optimization (WEO) in designing optimally PFHE. Besides, this study also compares the performance of three well-established old generations algorithms namely genetic algorithm (genetics and natural selection), particle swarm optimization (animals behaviour), and differential evolution (population-based) with the above three new algorithms in the optimization of PFHE.Seven design factors are chosen for PFHE optimization: exchanger length on hot and cold sides, height and thickness of fin, length of the fin-strip, fin frequency, and the number of hot side layers. The applicability of the suggested algorithms is assessed using a case study based on published research. Though DE performs the best in this study of design optimization concerning total cost and computational time, the three new-generation meta-heuristic algorithms BBBC, GWO, and WEO also provide the novel scope of application in heat exchanger design optimization and successfully finding the cost of the heat exchanger. According to this study, capital costs increase by 19.5% for BBBC, 24% for GWO, and 7.6% for GWO, but operational costs fall by 9.5% for BBBC and GWO when compared to the best performing algorithm (DE). On the other hand, WEO shows an increase of 32.6% in operational costs. Aside from that, a full analysis of the computing time for each algorithm is also provided. The DE has the quickest run time of 0.09 ?s, while the PSO takes the longest at 33.97 ?s. The rest of the algorithms have nearly identical values. As a result, a good comparison is established in this study, offering an excellent platform for designers and customers to make selections. Additionally, the three new generations algorithms mentioned here were not used earlier for optimization of PFHE and the comparative study illustrates that each of them possesses eat potential for cost optimization and also solving other complex problems.  相似文献   
43.
BackgroundThe recent pandemic by COVID-19 is a global threat to human health. The disease is caused by SARS-CoV-2 and the infection rate is increased more quickly than MERS and SARS as their rapid adaptation to varied climatic conditions through rapid mutations. It becomes more severe due to the lack of proper therapeutic drugs, insufficient diagnostic tool, scarcity of appropriate drug, life supporting medical facility and mostly lack of awareness. Therefore, preventive measure is one of the important strategies to control. In this context, herbal medicinal plants received a noticeable attention to treat COVID-19 in Indian subcontinent. Here, 44 Indian traditional plants have been discussed with their novel phytochemicals that prevent the novel corona virus. The basic of SARS-CoV-2, their common way of transmission including their effect on immune and nervous system have been discussed. We have analysed their mechanism of action against COVID-19 following in-silico analysis. Their probable mechanism and therapeutic approaches behind the activity of phytochemicals to stimulate immune response as well as inhibition of viral multiplication discussed rationally. Thus, mixtures of active secondary metabolites/phytochemicals are the only choice to prevent the disease in countries where vaccination will take long time due to overcrowded population density.  相似文献   
44.
Computational drug design is increasingly becoming important with new and unforeseen diseases like COVID-19. In this study, we present a new computational de novo drug design and repurposing method and applied it to find plausible drug candidates for the receptor binding domain (RBD) of SARS-CoV-2 (COVID-19). Our study comprises three steps: atom-by-atom generation of new molecules around a receptor, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom, explicit-water well-tempered metadynamics free energy calculations. By choosing the receptor binding domain of the viral spike protein, we showed that some of our new molecules and some of the repurposable drugs have stronger binding to RBD than hACE2. To validate our approach, we also calculated the free energy of hACE2 and RBD, and found it to be in an excellent agreement with experiments. These pool of drugs will allow strategic repurposing against COVID-19 for a particular prevailing conditions.  相似文献   
45.
Propagation characteristics of a polarized optical solitary pulse are analyzed by taking into account the effect of nonparaxiality and mutual interaction. To start with, a pair of generalized nonlinear Schrodinger equations is deduced through an operator approach. Stationary solutions of such a system are then analyzed numerically through a boundary value problem in two stages, with and without the nonparaxial effect. In the second stage, the propagating form of the corresponding spatial soliton is studied by an extended split step algorithm ETDRK. The initial profile is considered to be both a one- and two-soliton solution, to visualize the event of scattering and fusion. From this data, we have computed the intensity, root mean square spectral width, and chirp of a single soliton as it propagates. In the case of the two-soliton solution, we observe that for source parameter values, the fusion is more favored than scattering. It is observed that nonparaxiality and the interaction between A(x) and A(y) tends to destroy the periodic behaviors of these parameters. Lastly, we have investigated the modulational instability of the system as function of frequency detuning and nonparaxiality. The form of the gain is discussed as a function of nonparaxiality.  相似文献   
46.
47.
48.
Journal of Radioanalytical and Nuclear Chemistry - The sorption capacity of an in–house synthesized novel resin Polyhydraxamic acid(PHA) towards Cu(II), Sr(II), Gd(III), U(VI) ions was...  相似文献   
49.
Ductility is a common phenomenon in many metals but is difficult to achieve in molecular crystals. Organic crystals bend plastically on one or two face‐specific directions but fracture when stressed in any other arbitrary directions. An exceptional metal‐like ductility and malleability in the isomorphous crystals of two globular molecules, BH3NMe3 and BF3NMe3, is reported, with characteristic tensile stretching, compression, twisting, and thinning. The mechanically deformed samples, which transition to lower symmetry phases, retain good long‐range order amenable to structure determination by single‐crystal X‐ray diffraction. Molecules in these high‐symmetry crystals interact through electrostatic forces (B??N+) to form columnar structures with multiple slip planes and weak dispersive forces between columns. On the other hand, the limited number of facile slip planes and strong dihydrogen bonding in BH3NHMe2 negates ductility. Our study has implications for the design of soft ferroelectrics, solid electrolytes, barocalorics, and soft robotics.  相似文献   
50.
We focus on the possible thermal channel of the well-known Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) mechanism to identify the behavior of thermal anomalies during and prior to strong seismic events. For this, we investigate the variation of Surface Latent Heat Flux (SLHF) as resulting from satellite observables. We demonstrate a spatio-temporal variation in the SLHF before and after a set of strong seismic events occurred in Kathmandu, Nepal, and Kumamoto, Japan, having magnitudes of 7.8, 7.3, and 7.0, respectively. Before the studied earthquake cases, significant enhancements in the SLHF were identified near the epicenters. Additionally, in order to check whether critical dynamics, as the signature of a complex phenomenon such as earthquake preparation, are reflected in the SLHF data, we performed a criticality analysis using the natural time analysis method. The approach to criticality was detected within one week before each mainshock.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号