首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   7篇
  国内免费   1篇
化学   177篇
晶体学   1篇
力学   3篇
数学   6篇
物理学   15篇
  2023年   4篇
  2022年   25篇
  2021年   18篇
  2020年   11篇
  2019年   13篇
  2018年   11篇
  2017年   6篇
  2016年   10篇
  2015年   6篇
  2014年   6篇
  2013年   18篇
  2012年   8篇
  2011年   10篇
  2010年   7篇
  2009年   2篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   5篇
  2004年   8篇
  2003年   3篇
  2002年   2篇
  2000年   2篇
  1997年   2篇
  1994年   1篇
  1991年   2篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
排序方式: 共有202条查询结果,搜索用时 15 毫秒
21.
The photooxidation of methanol as a model substance for pollutants on rutile TiO(2) (001) and (100) surfaces was investigated using intensity modulated photocurrent spectroscopy (IMPS). The results are analyzed in view of the influence of the surface structure, the methanol concentration and the electrode potential on the rate constants of charge transfer and recombination. The obtained results have been explained with a model combining the theory of IMPS for a bulk semiconductor surface and the nature of the surface-bound intermediates (alternatively mobile or immobile OH˙ radicals). The results indicate that water photooxidation proceeds via mobile OH˙ radicals on both surfaces, while methanol addition gives rise to the involvement of immobile OH˙ radicals on the (100) surface. Detailed analysis in view of the surface structures suggests that the latter observation is due to efficient electron transfer from bridging OH˙ radicals on the (100) surface to methanol, while coupling of two of these radicals occurs in the absence of methanol, making them appear as mobile OH˙ radicals. In the case of the (001) surface, the coupling reaction dominates even in the presence of methanol due to the smaller distance between the bridging OH˙ radicals, leading to more efficient water oxidation, but less efficient methanol photooxidation on this surface.  相似文献   
22.
Recent Electron Paramagnetic Resonance (EPR) studies on alanine powders as a function of irradiation dose and temperature on the one hand and single crystal Electron Nuclear DOuble Resonance (ENDOR) studies on the other hand, showed the presence of at least three radicals contributing to the total alanine EPR spectrum. The latter spectrum obtained after irradiation at room temperature (RT), is dominated by the well-known stable-alanine-radical (SAR) CH3C*HCOO-, also denoted R1. Appropriate heating of irradiated alanine causes the relative contribution of R1 to decrease, resulting in a spectrum mainly caused by the H-abstraction radical CH3C*(NH3)COO-, denoted R2. Although the EPR spectrum of these two radicals could be satisfactorily simulated, their influence on dose reconstruction has not been reported yet. Therefore, a detailed Maximum Likelihood Common Factor Analysis (MLCFA) study has been performed on EPR spectra from polycrystalline alanine samples, after irradiation and heat treatments. Conclusions concerning the number of contributing radicals and their influence on the RT irradiated alanine EPR spectrum will be made.  相似文献   
23.
Preparation of pyrano[2,3‐d]thiazole and thiazolo[4,5‐b]pyridine derivatives through multicomponent reactions (MCRs) was achieved by the reaction of 2‐(2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophen‐3‐yl)thiazol‐4(5H)‐one with various active methylene reagents such as ethyl cyanoacetate or malononitrile in basic conditions containing diverse aromatic aldehyde. Furthermore, this study aims to evaluate the in vitro cytotoxic activity of the synthetic compounds against six cancer cell lines, and all the prepared compounds revealed valuable activity compared with the CHS‐828, which is the 2‐[6‐(4‐chlorophenoxy)hexyl]‐1‐cyano‐3‐pyridin‐4‐ylguanidine as the standard drug. Some of the pyrano[2,3‐d]thiazole and thiazolo[4,5‐b]pyridine derivatives showed the highest antitumor activity towards the six cancer cell lines. Moreover, (c‐Met) enzymatic activity of the most potent compounds showed that compounds 3b 2‐(2‐amino‐4,5,6,7 tetrahydrobenzo[b]thiophen‐3‐yl)‐5‐hydroxy‐7‐(2‐hydroxy‐phenyl)‐7H‐pyrano[2,3‐d]thiazole‐6 carbonitrile and 5e 2‐(2‐amino‐4,5,6,7‐tetrahydrobenzo[b]thiophen‐3‐yl)‐5‐hydroxy‐7‐phenyl‐4,7‐dihydrothiazolo[4,5‐b]pyridine‐6‐carbonitrile were with higher activities than foretinib. Three compounds were selected to examine their Pim‐1 kinase where compounds 3b and 7b showed the highest inhibitions.  相似文献   
24.
A thermochemical study of hydrochloric acid attack of synthetic fluorapatite was performed by a DRC. The calculated thermogenesis curves show one peak. The plot of the heat quantity as a function of the dissolved mass undergoes only one straight segment, and the thermogenesis curves present a single peak, suggesting the occurrence of a one-step dissolution process. The dissolution kinetics was examined according to the heterogeneous reaction models and showed that the dissolution is controlled by the product layer diffusion process with a reaction rate expressed by the following semiempirical equation; \(\left[ {1 + 2(1 - X) - 3(1 - X)^{{\frac{2}{3}}} } \right] = 3195 \times 10^{ - 2} C^{0.145} \left( {\frac{S}{L}} \right)^{ - 0.628} e^{{ - \frac{2600}{\text T}}} t\). The activation energy was determined as 21.6 ± 1.5 kJ mol?1  相似文献   
25.
Novel derivatives of pyrano[2,3‐b]pyridine and pyrrolo[2,3‐b]pyrano[2.3‐d]pyridine were prepared, and their structures were elucidated by spectral and elemental analyses. The newly prepared candidates were evaluated for their antimicrobial activity against Candida sp., Aspergillus multi, Aspergillus niger, Escherichia coli, and Staphylococcus aureus. All the tested compounds revealed potent to moderate activity toward all tested microorganisms; especially, candidate 10 showed comparable antifungal activity as that showed by the standard drug ketoconazole toward Candida sp., and ethyl 4‐methyl‐1,7,8,9‐tetrahydropyrano[2,3‐b]pyrrolo[2,3‐d]pyridine‐3‐carboxylate ( 12 ) was the most active compound against all the tested bacteria. Furthermore, the newly synthesized compounds are subjected to molecular docking study for the inhibition of the enzyme L‐glutamine: D‐fructose‐6‐phosphate amidotransferase [GlcN‐6‐P], which is a new target for antimicrobials to explain action mode of these target compounds as leads for discovering other antimicrobial agents.  相似文献   
26.
Kinetic studies of cyanide exchange on [M(CN)(4)](2-) square-planar complexes (M = Pt, Pd, and Ni) were performed as a function of pH by (13)C NMR. The [Pt(CN)(4)](2-) complex has a purely second-order rate law, with CN(-) as acting as the nucleophile, with the following kinetic parameters: (k(2)(Pt,CN))(298) = 11 +/- 1 s(-1) mol(-1) kg, DeltaH(2) (Pt,CN) = 25.1 +/- 1 kJ mol(-1), DeltaS(2) (Pt,CN) = -142 +/- 4 J mol(-1) K(-1), and DeltaV(2) (Pt,CN) = -27 +/- 2 cm(3) mol(-1). The Pd(II) metal center has the same behavior down to pH 6. The kinetic parameters are as follows: (k(2)(Pd,CN))(298) = 82 +/- 2 s(-1) mol(-1) kg, DeltaH(2) (Pd,CN) = 23.5 +/- 1 kJ mol(-1), DeltaS(2) (Pd,CN) = -129 +/- 5 J mol(-1) K(-1), and DeltaV(2) (Pd,CN) = -22 +/- 2 cm(3) mol(-1). At low pH, the tetracyanopalladate is protonated (pK(a)(Pd(4,H)) = 3.0 +/- 0.3) to form [Pd(CN)(3)HCN](-). The rate law of the cyanide exchange on the protonated complex is also purely second order, with (k(2)(PdH,CN))(298) = (4.5 +/- 1.3) x 10(3) s(-1) mol(-1) kg. [Ni(CN)(4)](2-) is involved in various equilibrium reactions, such as the formation of [Ni(CN)(5)](3-), [Ni(CN)(3)HCN](-), and [Ni(CN)(2)(HCN)(2)] complexes. Our (13)C NMR measurements have allowed us to determine that the rate constant leading to the formation of [Ni(CN)(5)](3-) is k(2)(Ni(4),CN) = (2.3 +/- 0.1) x 10(6) s(-1) mol(-1) kg when the following activation parameters are used: DeltaH(2)() (Ni,CN) = 21.6 +/- 1 kJ mol(-1), DeltaS(2) (Ni,CN) = -51 +/- 7 J mol(-1) K(-1), and DeltaV(2) (Ni,CN) = -19 +/- 2 cm(3) mol(-1). The rate constant of the back reaction is k(-2)(Ni(4),CN) = 14 x 10(6) s(-1). The rate law pertaining to [Ni(CN)(2)(HCN)(2)] was found to be second order at pH 3.8, and the value of the rate constant is (k(2)(Ni(4,2H),CN))(298) = (63 +/- 15) x10(6) s(-1) mol(-1) kg when DeltaH(2) (Ni(4,2H),CN) = 47.3 +/- 1 kJ mol(-1), DeltaS(2) (Ni(4,2H),CN) = 63 +/- 3 J mol(-1) K(-1), and DeltaV(2) (Ni(4,2H),CN) = - 6 +/- 1 cm(3) mol(-1). The cyanide-exchange rate constant on [M(CN)(4)](2-) for Pt, Pd, and Ni increases in a 1:7:200 000 ratio. This trend is modified at low pH, and the palladium becomes 400 times more reactive than the platinum because of the formation of [Pd(CN)(3)HCN](-). For all cyanide exchanges on tetracyano complexes (A mechanism) and on their protonated forms (I/I(a) mechanisms), we have always observed a pure second-order rate law: first order for the complex and first order for CN(-). The nucleophilic attack by HCN or solvation by H(2)O is at least nine or six orders of magnitude slower, respectively than is nucleophilic attack by CN(-) for Pt(II), Pd(II), and Ni(II), respectively.  相似文献   
27.
(+)-Methamphetamine (METH) use and addiction has grown at alarming rates over the past two decades, while no approved pharmacotherapy exists for its treatment. Immunopharmacotherapy has the potential to offer relief through producing highly specific antibodies that prevent drug penetration across the blood-brain barrier thus decreasing reinforcement of the behavior. Current immunotherapy efforts against methamphetamine have focused on a single hapten structure, namely linker attachment at the aromatic ring of the METH molecule. Hapten design is largely responsible for immune recognition, as it affects presentation of the target antigen and thus the quality of the response. In the current paper we report the systematic generation of a series of haptens designed to target the most stable conformations of methamphetamine as determined by molecular modeling. On the basis of our previous studies with nicotine, we show that introduction of strategic molecular constraint is able to maximize immune recognition of the target structure as evidenced by higher antibody affinity. Vaccination of GIX(+) mice with six unique METH immunoconjugates resulted in high antibody titers for three particularly promising formulations (45-108 μg/mL, after the second immunization) and high affinity (82, 130, and 169 nM for MH2, MH6, and MH7 hapten-based vaccines, respectively). These findings represent a unique approach to the design of new vaccines against methamphetamine abuse.  相似文献   
28.
Rotors supported by journal bearings may become unstable due to self-excited vibrations when a critical rotor speed is exceeded. Linearised analysis is usually used to determine the stability boundaries. Non-linear bifurcation theory or numerical integration is required to predict stable or unstable periodic oscillations close to the critical speed. In this paper, a dynamic model of a short journal bearing is used to analyse the bifurcation of the steady state equilibrium point of the journal centre. Numerical continuation is applied to determine stable or unstable limit cycles bifurcating from the equilibrium point at the critical speed. Under certain working conditions, limit cycles themselves are shown to disappear beyond a certain rotor speed and to exhibit a fold bifurcation giving birth to unstable limit cycles surrounding the stable supercritical limit cycles. Numerical integration of the system of equations is used to support the results obtained by numerical continuation. Numerical simulation permitted a partial validation of the analytical investigation.  相似文献   
29.
Novel trisubstituted ethylenes, alkyl and alkoxy ring-disubstituted propyl 2-cyano-3-phenyl-2-propenoates, RPhCH?C(CN)CO2C3H7 (where R is 2,3-dimethyl, 2,5-dimethyl, 2,6-dimethyl, 3,4-dimethyl, 2,3-dimethoxy, 2,4-dimethoxy, 2,5-dimethoxy, 2,6-dimethoxy 3,4-dimethoxy, 3,5-dimethoxy) were prepared and copolymerized with styrene. The monomers were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and propyl cyanoacetate and characterized by CHN elemental analysis, IR, 1H- and 13C-NMR. All the ethylenes were copolymerized with styrene (M1) in solution with radical initiation (ABCN) at 70°C. The composition of the copolymers was calculated from nitrogen analysis, and the structures were analyzed by IR, 1H and 13C-NMR, GPC, DSC, and TGA. Decomposition of the copolymers in nitrogen occurred in two steps, first in the 200–500°C range with residue (0.6–5.0% wt.), which then decomposed in the 500–800°C range.  相似文献   
30.
Kinetic studies of solvent structure effects and solute–solvent interactions on the solvolysis of [Co(NH3)5Cl]2+ complex ion have been investigated spectrophotometrically in binary aqueous mixtures. Three cosolvents were used (acetonitrile, dimethylsulfoxide, and urea) over a wide range of temperatures. Nonlinear plots were found for log(rate constant) against the reciprocal of the relative permitivity of the medium. The enthalpy and entropy of activation (ΔH# and ΔS#) exhibited extrema in the same composition region where the physical properties indicate sharp changes in the structure of the solvent, confirming that the solvent structure is an important factor in determining the solvolytic reactivity. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 416–422, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号