首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   4篇
  国内免费   6篇
化学   184篇
晶体学   4篇
力学   6篇
数学   94篇
物理学   119篇
  2022年   2篇
  2021年   13篇
  2020年   4篇
  2019年   3篇
  2018年   12篇
  2017年   8篇
  2016年   12篇
  2015年   6篇
  2014年   12篇
  2013年   33篇
  2012年   20篇
  2011年   23篇
  2010年   18篇
  2009年   15篇
  2008年   18篇
  2007年   24篇
  2006年   12篇
  2005年   10篇
  2004年   11篇
  2003年   6篇
  2002年   18篇
  2001年   3篇
  2000年   7篇
  1999年   7篇
  1998年   4篇
  1997年   9篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   9篇
  1991年   4篇
  1990年   10篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   3篇
  1985年   8篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1975年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有407条查询结果,搜索用时 15 毫秒
401.
The use of nano‐biocomposites based on plasticized poly(lactic acid) (PLA) has been proposed as a way to improve the polymer ductility and to expand PLA applications window. Novative nano‐biocomposites were elaborated with PLA plasticized by polyadipates (15 wt%) with different molar masses (from 1500 to 2500 Da), with 2.1 wt% of an organo‐modified montmorillonite (O‐MMT). These materials showed enhanced ductility and barrier properties. The clay was swelled in liquid polyadipates prior to their blending with PLA to facilitate chains intercalation and nanofiller exfoliation during melt‐blending. In certain processing conditions, quite homogenous and exfoliated structures were obtained, as shown by X‐ray diffraction (XRD) and transmission electronic microscopy (TEM) results. Irrespective of the average molar mass of the polyadipate, the clay addition induced a reduction in around 25% in oxygen transmission rate (OTR) without an important detriment in tensile properties. Nano‐biocomposites prepared with higher molar masses polyadipates showed the highest thermal stability as well as the lowest OTR, resulting in very promising and novative materials for different applications such as soft packaging. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
402.
A specific technique of numerical treatment of atomic force microscopy (AFM) and magnetic force microscopy (MFM) signal has been developed to enhance the quality of raw images, in order both to improve their contrast and to gain better insight on the sample topography and on the local arrangement of the magnetisation vector. Basically, the technique consists in computing the optimum conformal transformation that allows one to superimpose two AFM images of the same area, acquired performing subsequent scans whose fast scan axis were mutually perpendicular, and applying the inverse transform to the second image. After MFM image superposition, the two datasets were either summed or subtracted, in order to improve the magnetic contrast. Computations have been done in a Matlab® workspace with the help of Image Processing Toolbox 4.2. Improved MFM images obtained on both dots and antidots thin evaporated Co arrays in the demagnetised state (after performing alternate field demagnetisation parallel and perpendicular to the array plane) have been interpreted. Samples consisting of large-size patterns (1×1 mm) of circular dots/antidots with square/hexagonal lattices and minimum diameters of 1 μm were prepared by optical lithography. The magnetic film thickness was chosen depending on resist thickness, and varied between 25 and 150 nm, with a fixed ratio 1:4 between metal/resist film thickness. MFM was exploited to obtain images of either intra-dot or inter-antidot magnetic structures.  相似文献   
403.
Machine learning and pattern recognition techniques are being increasingly employed in functional magnetic resonance imaging (fMRI) data analysis. By taking into account the full spatial pattern of brain activity measured simultaneously at many locations, these methods allow detecting subtle, non-strictly localized effects that may remain invisible to the conventional analysis with univariate statistical methods. In typical fMRI applications, pattern recognition algorithms "learn" a functional relationship between brain response patterns and a perceptual, cognitive or behavioral state of a subject expressed in terms of a label, which may assume discrete (classification) or continuous (regression) values. This learned functional relationship is then used to predict the unseen labels from a new data set ("brain reading"). In this article, we describe the mathematical foundations of machine learning applications in fMRI. We focus on two methods, support vector machines and relevance vector machines, which are respectively suited for the classification and regression of fMRI patterns. Furthermore, by means of several examples and applications, we illustrate and discuss the methodological challenges of using machine learning algorithms in the context of fMRI data analysis.  相似文献   
404.
We report the use of PLD to grow different ZnO nanostructures. Very different film morphologies have been observed using different laser wavelengths to ablate the target. The influence of substrate temperature and oxygen background pressure on the film morphology has been investigated too. Smooth and rough films, hexagonal pyramids and columns have been obtained by using a KrF excimer laser (248 nm) for the target ablation, while hexagonal hierarchical structures and pencils have been obtained by using ArF (193 nm). Photoluminescence and X-ray diffraction measurements revealed the good quality of the samples, in particular of those deposited using the ArF laser beam.  相似文献   
405.
We show that the product decomposition of a depolarizing Mueller matrix (S.-Y. Lu, R.A. Chipman, J. Opt. Soc. Am. A 13 (1996) 1106) as well as the recently proposed reverse decomposition (R. Ossikovski, A. De Martino, Opt. Lett. 32 (2007) 689) need to be extended in order to account for Mueller matrices with negative determinants. The necessity of such an extension of the formalism is illustrated on experimentally determined Mueller matrices. The procedure of the modified decomposition formalism is explicitly described.  相似文献   
406.
The combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) has been proposed as a tool to study brain dynamics with both high temporal and high spatial resolution. Multimodal imaging techniques rely on the assumption of a common neuronal source for the different recorded signals. In order to maximally exploit the combination of these techniques, one needs to understand the coupling (i.e., the relation) between electroencephalographic (EEG) and fMRI blood oxygen level-dependent (BOLD) signals.  相似文献   
407.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号