首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1211篇
  免费   37篇
  国内免费   8篇
化学   669篇
晶体学   8篇
力学   70篇
数学   115篇
物理学   394篇
  2023年   11篇
  2022年   12篇
  2021年   6篇
  2019年   19篇
  2018年   7篇
  2017年   6篇
  2016年   23篇
  2015年   25篇
  2014年   35篇
  2013年   40篇
  2012年   82篇
  2011年   91篇
  2010年   53篇
  2009年   56篇
  2008年   66篇
  2007年   71篇
  2006年   65篇
  2005年   57篇
  2004年   38篇
  2003年   38篇
  2002年   30篇
  2001年   26篇
  2000年   29篇
  1999年   14篇
  1998年   10篇
  1997年   16篇
  1996年   18篇
  1995年   9篇
  1994年   14篇
  1993年   29篇
  1992年   21篇
  1991年   23篇
  1990年   20篇
  1989年   10篇
  1988年   11篇
  1987年   12篇
  1985年   9篇
  1984年   9篇
  1983年   7篇
  1982年   13篇
  1981年   11篇
  1980年   12篇
  1979年   15篇
  1978年   11篇
  1977年   9篇
  1975年   7篇
  1974年   6篇
  1972年   5篇
  1970年   7篇
  1969年   8篇
排序方式: 共有1256条查询结果,搜索用时 24 毫秒
51.
52.
The new copper(I) nitro complex [(Ph(3)P)(2)N][Cu(HB(3,5-Me(2)Pz)(3))(NO(2))] (2), containing the anionic hydrotris(3,5-dimethylpyrazolyl)borate ligand, was synthesized, and its structural features were probed using X-ray crystallography. Complex 2 was found to cocrystallize with a water molecule, and X-ray crystallographic analysis showed that the resulting molecule had the structure [(Ph(3)P)(2)N][Cu(HB(3,5-Me(2)Pz)(3))(NO(2))]·H(2)O (3), containing a water hydrogen bonded to an oxygen of the nitrite moiety. This complex represents the first example in the solid state of an analogue of the nitrous acid intermediate (CuNO(2)H). A comparison of the nitrite reduction reactivity of the electron-rich ligand containing the CuNO(2) complex 2 with that of the known neutral ligand containing the CuNO(2) complex [Cu(HC(3,5-Me(2)Pz)(3))(NO(2))] (1) shows that reactivity is significantly influenced by the electron density around the copper and nitrite centers. The detailed mechanisms of nitrite reduction reactions of 1 and 2 with acetic acid were explored by using density functional theory calculations. Overall, the results of this effort show that synthetic models, based on neutral HC(3,5-Me(2)Pz)(3) and anionic [HB(3,5-Me(2)Pz)(3)](-) ligands, mimic the electronic influence of (His)(3) ligands in the environment of the type II copper center of copper nitrite reductases (Cu-NIRs).  相似文献   
53.
When thienyl Schiff base 1, derived from 2-formylthiophene and hydrazine, reacted with Fe2(CO)9 in n-hexane, three major complexes were obtained: (1) a diironhexacarbonyl complex with two 2-thienylmethylideneamido bridging ligands 2, which resulted from the =N---N= bond cleavage of ligand 1; (2) a doubly cyclometalated di-μ-di-(η12-thienyl; η11(N))bis(hexacarbonyldiiron) complex (3); and (3) a cyclometalated (μ-η12-thienyl; η11(N))hexacarbonyldiiron complex (4). Molecular structures of compounds 1a, 1c, and 2a have been determined by single-crystal X-ray diffraction.  相似文献   
54.
The excess chemical potential, partial molar enthalpy, and volume of 1-propanol were determined in ternary mixtures of 1-propanol–glycerol–H2O at 25°C. The mole fraction dependence of all these thermodynamic functions was used to elucidate the effect of glycerol on the molecular organization of H2O. The glycerol molecules do not exert a hydrophobic effect on H2O. Rather, the hydroxyl groups of glycerol, perhaps by forming clusters via its alkyl backbone with hydroxyl groups pointing outward, interact with H2O so as to reduce the characteristics of liquid H2O. The global hydrogen bond probability and, hence, the percolation nature of the hydrogen bond network is reduced. In addition, the degree of fluctuation inherent in liquid H2O is reduced by glycerol perhaps by participating in the hydrogen bond network via OH groups. At infinite dilution, the pair interaction coefficients in enthalpy were evaluated and these data suggest a possibility that the interaction is mediated through H2O.  相似文献   
55.
Removal of H2S from Exhaust Gas by Use of Alkaline Activated Carbon   总被引:2,自引:0,他引:2  
The purpose of this research was to select an activated carbon and alkaline solution blend that generated the best H2S adsorption on alkaline-activated carbon. RB2 (activated carbon) impregnated with NaOH solution was shown to have the optimum H2S removal efficiency. The optimum NaOH concentration was 50 mg per gram of carbon. H2S adsorption via RB2-NaOH50 was five times that of a corresponding fresh-activated carbon. The adsorption equivalent of H2S is nearly 1 (mol-H2S/mol-AOH), therefore, H2S + AOH AHS + H2O was the major reaction. The H2S adsorption isotherm corresponded to the Freundlich isotherm.  相似文献   
56.
Four new cyclopropyl-triterpenes, 27-nor-3beta-hydroxy-25-oxocycloartane (1), (22E)-25,26,27-trinor-3beta-hydroxycycloart-22-en-24-al (2), 3beta-acetoxy-15alpha-hydroxy-13,27-cyclours-11-ene (3), 3beta-acetoxy-12alpha-formyloxy-13,27-cycloursan-11alpha-ol (4), together with (23E)-27-nor-3beta-hydroxycycloart-23-en-25-one (5) were isolated from the aerial roots of Ficus microcarpa. Compounds 3 and 4 are rare 13,27-cycloursane-type triterpenes. Their structures were elucidated by spectroscopic and chemical methods.  相似文献   
57.
A H3PW12O40/ZrO2 catalyst for effective dimethyl carbonate (DMC) formation via methanol carbonation was prepared using the sol–gel method. X-ray photoelectron spectra showed that reactive and dominant (63%) W(VI) species, in WO3 or H2WO4, enhanced the catalytic performances of the supported ZrO2. The mesoporous structure of H3PW12O40/ZrO2 was identified by nitrogen adsorption–desorption isotherms. In particular, partial sintering of catalyst particles in the duration of methanol carbonation caused a decrease in the Brunauer–Emmett–Teller surface area of the catalyst from 39 to 19 m2/g. The strong acidity of H3PW12O40/ZrO2 was confirmed by the desorption peak observed at 415 °C in NH3 temperature-programmed desorption curve. At various reaction temperatures (T?=?110, 170, and 220 °C) and CO2/N2 volumetric flow rate ratios (CO2/N2?=?1/4, 1/7, and 1/9), the calculated catalytic performances showed that the optimal methanol conversion, DMC selectivity, and DMC yield were 4.45, 89.93, and 4.00%, respectively, when T?=?170 °C and CO2/N2?=?1/7. Furthermore, linear regression of the pseudo-first-order model and Arrhenius equation deduced the optimal rate constant (4.24?×?10?3 min?1) and activation energy (Ea?=?15.54 kJ/mol) at 170 °C with CO2/N2?=?1/7 which were favorable for DMC formation.  相似文献   
58.
The title complex, [CuCl2(C6H6N4S2)], has a flattened tetrahedral coordination. The CuII atom is located on a twofold rotation axis and is coordinated by two N atoms from a chelating 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and by two Cl atoms. Intramolecular hydrogen bonding exists between the amino groups of the 2,2′‐di­amino‐4,4′‐bi‐1,3‐thia­zole ligand and the Cl atoms. The intermolecular separation of 3.425 (1) Å between parallel bi­thia­zole rings suggests there is a π–π interaction between them.  相似文献   
59.
Tyrosinases are ubiquitous binuclear copper enzymes that oxygenate to CuII2O2 cores bonded by three histidine Nτ‐imidazoles per Cu center. Synthetic monodentate imidazole‐bonded CuII2O2 species self‐assemble in a near quantitative manner at ?125 °C, but Nπ‐ligation has been required. Herein, we disclose the syntheses and reactivity of three Nτ‐imidazole bonded CuII2O2 species at solution temperatures of ?145 °C, which was achieved using a eutectic mixture of THF and 2‐MeTHF. The addition of anionic phenolates affords a CuIII2O2 species, where the bonded phenolates hydroxylate to catecholates in high yields. Similar CuIII2O2 intermediates are not observed using Nπ‐bonded CuII2O2 species, hinting that Nτ‐imidazole ligation, conserved in all characterized Ty, has functional advantage beyond active‐site flexibility. Substrate accessibility to the oxygenated Cu2O2 core and stabilization of a high oxidation state of the copper centers are suggested from these minimalistic models.  相似文献   
60.
The established ability of the Fe(II) bridging hydride species (micro-H)(micro-pdt)[Fe(CO)2(PMe3)]2+, 1-H+, to take-up and heterolytically activate dihydrogen, resulting in H/D scrambling of H2/D2 and H2/D2O mixtures (Zhao et al. Inorg. Chem. 2002, 41, 3917) has prompted a study of simultaneous alkene/H2 activation by such [Fe]H2ase model complexes. That the required photolysis produced an open site was substantiated by substitution of CO in 1-H+ by CH3CN with formation of structurally characterized [(micro-H)(micro-pdt)[Fe(CO)2(PMe3)][Fe(CO)(CH3CN)(PMe3)]]+[PF6]-. Under similar photolytic conditions, H/D exchange reactions between D2 and terminal alkenes (ethylene, propene and 1-butene), but not bulkier alkenes such as 2-butene or cyclohexene, were catalyzed by 1-H+ and the edt (SCH2CH2S) analogue, 2-H+. Substantial regioselectivity for H/D exchange at the internal vinylic hydrogen was observed. The extent to which the olefins were deuterium enriched vs deuterated was catalyst dependent. The stabilizing effect of the binuclear chelating ligands, SCH2CH2CH2S, pdt, and SCH2CH2S, edt, is required for the activity of binuclear catalysts, as the mono-dentate micro-SEt analogue decomposed to inactive products under the photolytic conditions of the catalysis. Reactions of 1 and 2 with EtOSO2CF3 yielded the S-alkylated products, [(micro-SCH2CH2CH2SEt)[Fe(CO)2(PMe3)]2]+[SO3CF3]- (1-Et+), and 2-Et+, rather than micro-C2H5 analogues to the micro-H of 1-H+. The stability and lack of reactivity toward H2 of 1-Et+ and 2-Et+, indicates they are not on the reaction path of the olefin/D2 H/D exchange process. A mechanism with olefin binding to an open site created by CO loss and formation of an Fe-(CH2CHDR) intermediate is indicated. A likely role of a binuclear chelate effect is implicated for the unique S-XXX-S cofactor in the active site of [Fe]H2ase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号