首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3873篇
  免费   444篇
  国内免费   469篇
化学   3226篇
晶体学   48篇
力学   164篇
综合类   20篇
数学   439篇
物理学   889篇
  2024年   6篇
  2023年   62篇
  2022年   105篇
  2021年   104篇
  2020年   133篇
  2019年   139篇
  2018年   116篇
  2017年   84篇
  2016年   166篇
  2015年   135篇
  2014年   198篇
  2013年   255篇
  2012年   328篇
  2011年   313篇
  2010年   216篇
  2009年   190篇
  2008年   223篇
  2007年   209篇
  2006年   206篇
  2005年   175篇
  2004年   152篇
  2003年   158篇
  2002年   174篇
  2001年   136篇
  2000年   108篇
  1999年   132篇
  1998年   79篇
  1997年   61篇
  1996年   90篇
  1995年   71篇
  1994年   34篇
  1993年   40篇
  1992年   26篇
  1991年   31篇
  1990年   30篇
  1989年   21篇
  1988年   17篇
  1987年   17篇
  1986年   14篇
  1985年   12篇
  1984年   6篇
  1983年   5篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1970年   1篇
  1963年   1篇
  1936年   1篇
排序方式: 共有4786条查询结果,搜索用时 15 毫秒
111.
The fruit of Schisandra chinensis is a well‐known herbal medicine and dietary supplement due to a variety of biological activities including antihepatotoxic and antihyperlipidemic activities. However, the simultaneous validation methodology and pharmacokinetic investigation of nine lignans of S. chinensis extract in biological samples have not been proved yet. Thus, the present study was undertaken to develop the proper sample preparation method and simultaneous analytical method of schisandrol A, gomisin J, schisandrol B, tigloylgomisin H, angeloylgomisin H, schisandrin A, schisandrin B, gomisin N, and schisandrin C in the hexane‐soluble extract of S. chinensis to apply for the pharmacokinetic study in rats. All intra‐ and interprecisions of nine lignans were below 13.7% and accuracies were 85.1–115% and it is enough to evaluate the pharmacokinetic parameters after both intravenous and oral administration of hexane‐soluble extract of S. chinensis to rats.  相似文献   
112.
Zhang  L.  Feng  X.  Gu  Y.  Yang  T.  Li  X.  Yu  H.  You  Z. 《Journal of Structural Chemistry》2022,63(8):1358-1370
Journal of Structural Chemistry - New zinc complexes, [ZnBr2(HL)] (1), [ZnBr(HL)(NCS)]·0.5H2O (2), [Zn(HL)I2] (3), and [ZnL2] (4), where L is the monoanionic form of...  相似文献   
113.
Research on Chemical Intermediates - Dichlorobenzonitriles are important organic intermediates for the production of many fine chemicals and are produced most economically and environment-friendly...  相似文献   
114.
Li  Baixue  Li  Zhen  You  Kai  Qin  Anjun  Tang  Ben Zhong 《中国科学:化学(英文版)》2022,65(4):771-777
Science China Chemistry - Secrecy has received tremendous attention in modern information society. Innovative polymer-based fluorescent materials with multiple mode emission are quite desirable to...  相似文献   
115.
In this study, molecular dynamics simulation is used to investigate the effects of water-based substitutional defects in zeolitic imidazolate frameworks (ZIF)-8 membranes on their reverse osmosis (RO) desalination performance. ZIF-8 unit cells containing up to three defect sites are used to construct the membranes. These substitutional defects can either be Zn defects or linker defects. The RO desalination performance of the membranes is assessed in terms of the water flux and ion rejection rate. The effects of defects on the interactions between the ZIF-8 membranes and NaCl are investigated and explained with respect to the radial distribution function (RDF) and ion density distribution. The results show that ion adsorption on the membranes occurs at either the nitrogen atoms or the defect sites. Complete NaCl rejection can be achieved by introducing defects to change the size of the pores. It has also been discovered that the presence of linker defects increases membrane hydrophilicity. Overall, molecular dynamics simulations have been used in this study to show that water-based substitutional defects in a ZIF-8 structure reduce the water flux and influence its hydrophilicity and ion adsorption performance, which is useful in predicting the type and number of defect sites per unit cell required for RO applications. Of the seven ZIF-8 structures tested, pristine ZIF-8 exhibits the best RO desalination performance.  相似文献   
116.
Reaction of [MoO2(Acac)2] (Acac = acetylacetonate) with two similar hydrazone ligands in methanol yielded two mononuclear molybdenum(VI) oxocomplexes with general formula [MoO2(L)(CH3OH)], where L = L1 = (4-nitrophenoxy)acetic acid [1-(3-ethoxy-2-hydroxyphenyl)methylidene]hydrazide (H2L1) and L = L2 = (4-nitrophenoxy)acetic acid [1-(5-bromo-2-hydroxyphenyl)methylidene]hydrazide (H2L2). Crystal and molecular structures of the complexes were determined by single crystal X-ray diffraction method. All investigated compounds were further characterized by elemental analysis and FT-IR spectra. Single crystal X-ray structural studies indicate that the hydrazone ligands coordinate to the MoO2 cores through enolate oxygen, phenolate oxygen, and azomethine nitrogen. The Mo atoms in both complexes are in octahedral coordination.  相似文献   
117.
Dysregulated microRNA (miRNA) expression has a critical role in tumor development and metastasis. However, the mechanism by which miRNAs control melanoma metastasis is unknown. Here, we report reduced miR-98 expression in melanoma tissues with increasing tumor stage as well as metastasis; its expression is also negatively associated with melanoma patient survival. Furthermore, we demonstrate that miR-98 inhibits melanoma cell migration in vitro as well as metastatic tumor size in vivo. We also found that IL-6 is a target gene of miR-98, and IL-6 represses miR-98 levels via the Stat3-NF-κB-lin28B pathway. In an in vivo melanoma model, we demonstrate that miR-98 reduces melanoma metastasis and increases survival in part by reducing IL-6 levels; it also decreases Stat3 and p65 phosphorylation as well as lin28B mRNA levels. These results suggest that miR-98 inhibits melanoma metastasis in part through a novel miR-98-IL-6-negative feedback loop.  相似文献   
118.
SO2–ethanol–water (SEW) fractionation process is a highly attractive platform for future lignocellulosic Biorefineries. Its governing advantages include high flexibility in the selection of the raw material, simple and efficient recovery of fractionation chemicals, absence of carbohydrate degradation (both cellulose and hemicelluloses), and high reaction rates. The process is suitable for production of various carbohydrate- and lignin-based products including papermaking pulp, glucose, bioalcohols and lignosulfonates. The present paper addresses the possibility of producing dissolving pulp from spruce using SEW fractionation followed by ECF bleaching with and without hot caustic extraction. Comprehensive characterisation of chemical and macromolecular properties of the SEW dissolving pulps was complemented by determining the quality of viscose. The comparison with conventional viscose-grade acid sulfite pulps revealed close proximity in all properties. Therefore, considering the advantages of SEW process, it is suggested as a possible replacement for acid sulfite process in dissolving pulp manufacturing.  相似文献   
119.
Despite the aesthetically appealing structures and tantalizing physical and chemical properties, zigzag hydrocarbon belts and their heteroatom-embedded analogues remain challenging synthetic targets. We report herein the synthesis of diverse O/N-doped zigzag hydrocarbon belts based on selective bridging of the fjords of resorcin[4]arene derivatives through intramolecular SNAr and palladium-catalyzed intermolecular C−N bond formation reactions. Preorganized conformations of mono-macrocyclic, half-belt and quasi-belt compounds were revealed to facilitate cyclization reactions to construct heteroatom-linked octahydrobelt[8]arenes. The acquired products had strained square-prism-shaped belt structures in which all six-membered heterocyclic rings adopted an unusual boat conformation with equatorially configured alkyl groups. The unprecedented heteroatom-bearing belts also exhibited different photophysical and redox properties to those of octahydrobelt[8]arene analogues.  相似文献   
120.
Precise control of the micro-/nanostructures of nanomaterials, such as hollow multi-shelled structures (HoMSs), has shown its great advantages in various applications. Now, the crystal structure of building blocks of HoMSs are controlled by introducing the lattice distortion in HoMSs, for the first time. The lattice distortion located at the nanoscale interface of SnS2/SnO2 can provide additional active sites, which not only provide the catalytic activity under visible light but also improve the separation of photoexcited electron–hole pairs. Combined with the efficient light utilization, the natural advantage of HoMSs, a record catalytic activity was achieved in solid–gas system for CO2 reduction, with an excellent stability and 100 % CO selectivity without using any sensitizers or noble metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号