首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25708篇
  免费   4005篇
  国内免费   2964篇
化学   18590篇
晶体学   269篇
力学   1566篇
综合类   236篇
数学   3036篇
物理学   8980篇
  2024年   53篇
  2023年   496篇
  2022年   694篇
  2021年   824篇
  2020年   975篇
  2019年   994篇
  2018年   799篇
  2017年   812篇
  2016年   1133篇
  2015年   1131篇
  2014年   1410篇
  2013年   1732篇
  2012年   2308篇
  2011年   2311篇
  2010年   1554篇
  2009年   1400篇
  2008年   1671篇
  2007年   1545篇
  2006年   1435篇
  2005年   1206篇
  2004年   885篇
  2003年   776篇
  2002年   759篇
  2001年   661篇
  2000年   554篇
  1999年   543篇
  1998年   460篇
  1997年   412篇
  1996年   456篇
  1995年   374篇
  1994年   307篇
  1993年   256篇
  1992年   246篇
  1991年   232篇
  1990年   184篇
  1989年   162篇
  1988年   118篇
  1987年   101篇
  1986年   105篇
  1985年   95篇
  1984年   69篇
  1983年   58篇
  1982年   47篇
  1981年   37篇
  1980年   36篇
  1979年   24篇
  1978年   26篇
  1977年   29篇
  1976年   29篇
  1973年   27篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
991.
Hydride generation atomic fluorescence spectrometry (HG-AFS) is used for the determination of hydride-forming elements due to its high sensitivity, simplicity, and low cost. A new HG-AFS method for the simultaneous determination of arsenic and lead in vegetable oil is reported. Vortex-assisted extraction with dilute nitric acid was used to isolate arsenic and lead from vegetable oil. The conditions influencing the fluorescence signal, including the carrier fluid, oxidizing agent, and reducing agent, were optimized. The interferences of coexisting ions were also evaluated. Under the optimized conditions, the limits of detection were 0.6 and 0.4?µg?kg?1 for arsenic and lead. The recoveries were from 84.4 to 105% for both metals in vegetable oil. The optimized method was used for the determination of arsenic and lead in commercial vegetable oil. The analytical results by this approach were in good agreement with values obtained by inductively coupled plasma mass spectrometry with microwave digestion.  相似文献   
992.
In response to aggravated fossil resources consuming and greenhouse effect, CO2 reduction has become a globally important scientific issue because this method can be used to produce value-added feedstock for application in alternative energy supply. Photoelectrocatalysis, achieved by combining optical energy and external electrical bias, is a feasible and promising system for CO2 reduction. In particular, applying graphene in tuning photoelectrochemical CO2 reduction has aroused considerable attention because graphene is advantageous for enhancing CO2 adsorption, facilitating electrons transfer, and thus optimizing the performance of graphene-based composite electrodes. In this review, we elaborate the fundamental principle, basic preparation methods, and recent progress in developing a variety of graphene-based composite electrodes for photoelectrochemical reduction of CO2 into solar fuels and chemicals. We also present a perspective on the opportunities and challenges for future research in this booming area and highlight the potential evolution strategies for advancing the research on photoelectrochemical CO2 reduction.  相似文献   
993.
Research on NOx treatment is extensive in recent years due to growing environmental awareness. Selec- tive catalytic reduction (SCR) of NOx, as a proven technology, offers higher NOx control efficiency than many other NOx treatment methods. The present work reviews the recent development of SCR reactor technologies. Firstly, catalysts and mechanism of different SCRs were briefly summarized. Different SCR reactors, e.g. structured reactor, fluidized bed reactor and moving bed reactor, were then discussed. As a more advanced technology, multifunctional reactors were also developed for SCR process and could be divided into two categories: decoupled adsorption-reaction process and combined SCR system. The mechanism and properties of these processes were discussed in detail. Some recommendations were given for the future work in SCR reactor design. SCR reactor technology for emerging energy processes was also addressed, such as oxyfuel combustion and biofuel conversion processes, which put forward new requirements for SCR technologies and also open new opportunities for advanced design of SCR reactors.  相似文献   
994.
A rapid, sensitive and reliable high‐performance liquid chromatography–mass spectrometry (LC‐MS/MS) method was developed and validated for simultaneous quantification of the five main bioactive components, calycosin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, astragaloside IV and schisandrin in rat plasma after oral administration of Shenqi Wuwei chewable tablets. Plasma samples were extracted using solid‐phase extraction separated on a CEC18 column and detected by MS with an electrospray ionization interface in multiple‐reaction monitoring mode. Calibration curves offered linear ranges of two orders of magnitude with r > 0.995. The method had a lower limit of quantitation of 0.1, 0.02, 0.1, 1 and 0.1 ng/mL for calycosin, calycosin‐7‐O‐β‐d ‐glucoside, formononetin, astragaloside IV and schisandrin, respectively. Intra‐ and inter‐day precisions (relative standard deviation) for all analytes ranged from 0.97 to 7.63% and from 3.45 to 10.89%, respectively. This method was successfully applied to the pharmacokinetic study of the five compounds in rats after oral administration of Shenqi Wuwei chewable tablets. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
995.
All-polymer solar cells (all-PSCs) exhibit great potentials in commercial applications. All-PSCs have observed steady performance gains with power conversion efficiency now reaching over 17% in the open literature. However, the current processing of all-PSCs relies predominantly on toxic, chlorinated solvents in moisture-free environments, representing a significant barrier for their commercialization due to the added costs to handle and dispose of such solvents. There is thus an urgent need for safe, environmentally benign, and sustainable ink-based processing methods to produce all-PSC devices reliably and reproducibly in ambient air. In this perspective, fundamental insights on the interplay between all-polymer blend morphologies and eco-friendly solvents are provided. Also, we discuss the recent successes of the green processing methods to manipulate the photoactive morphologies for high-efficiency all-PSCs. In the end, we provide an outlook on future challenges and opportunities of eco-friendly solvents processed all-PSCs for large-scale manufacturing.  相似文献   
996.
Zhao-Qi  Wang  Hai-Yan  Wang  Zeng  Zhao-Yi  Yan  Cheng 《Structural chemistry》2019,30(1):151-165

Detecting the underlying performance of hydrated electrons and hydroxyl radicals in the cationic water cluster can greatly help to understand the inter reaction mechanism in the liquid water and aqueous solutions. Based on our previous (H2O)10+ research, we have paid attention to more problems of larger cationic clusters in this work, including the existence of hemibonded type, long-range correction functions, and hydrogen-bonded site analyses. The lower-energy structures of the cationic water cluster (H2O)12+ have been comprehensively explored, and more experienced functions are introduced to check the ground state and vibration spectrum. Unlike the configuration regularity of neutral (H2O)12 clusters and small cationic water clusters, those new-found structures for (H2O)12+ are inclined to adopt three dimension (3D) cage-like structures and the H2O-OH2 structure appears in the higher energy isomer. The calculation reveals that the lowest stable isomer is the 3D cage structure W14 predicted at MP2 level, which has not been reported yet. In the thermal simulation, structure transition from the cage-like to the ring-like occurs at T?>?≈256 K, and the two dimension (2D) ring-like structure occupies a dominant position at high temperature range. The infrared spectra explain that the difference of the spectra between the 2D net structures and 3D cage-structures is mainly caused by the weight fluctuation of single acceptor-single donor (AD), double acceptor-single donor (AAD), and single acceptor-double donor (ADD) sites in these isomers. This further gives a similarity relation between (H2O)12+ and H+(H2O)12 clusters in the shape of the network and spectral characteristics. By molecular orbitals and topological analysis, we find that the lone pair orbital on hydroxyl radical dominates the reactivity and stability of cationic system. The present research may be helpful for exploring the evolution law of the larger cationic water clusters in the future.

  相似文献   
997.
He  Chixian  Yu  Shiwen  Ma  Shuye  Cheng  Feixiang 《Transition Metal Chemistry》2019,44(6):515-524

Three ruthenium(II) polypyridyl complexes with 5-amino-1,10-phenanthroline ligands have been successfully designed and synthesized. They have been fully characterized by ESI-MS, ESI-HRMS, 1H NMR, and elemental analyses. The photophysical and electrochemical properties of the three complexes have been investigated in organic solvent. The geometrical configuration and the electron density distribution in the frontier molecular orbitals of the three complexes have been studied. The three complexes show metal-to-ligand charge transfer (1MLCT) absorption at 445 nm, and intense triplet metal-to-ligand (3MLCT) emission at around 619 nm in fluid solution at 298 K and 580 nm in low-temperature glass. Electrochemical studies of the three complexes are consistent with one RuIII/II reversible couple at around 1.31 V accompanied by three ligand-centered reduction couples.

  相似文献   
998.
A novel micro matrix solid phase dispersion method was successfully used for the extraction of quaternary alkaloids in Phellodendri chinensis cortex. The elution of target compounds was accomplished with sodium hexanesulfonate as the eluent solvent. A neutral ion pair was formed between ion-pairing reagent and positively charged alkaloids in this process, which was beneficial for selectively extraction of polar alkaloids. Several parameters were optimized and the optimal conditions were listed as follows: silica gel as the sorbent, silica to sample mass ratio of 1:1, the grinding time of 1 min. The exhaustive elution of targets was achieved by 200 µL methanol/water (9:1) containing 150 mM sodium hexane sulfonate at pH 4.5. The method validation covered linearity, recovery, precision of intraday and interday, limits of detection, limits of quantitation, and repeatability. This established method was rapid, simple, environmentally friendly, and highly sensitive.  相似文献   
999.
Xiao  Jun-An  Cheng  Xiu-Liang  Peng  Hai  Li  Jin-Lian  Xie  Zhen-Zhen  Chen  Wen-Qiang  Liu  Zhi-Ping  Xiao  Qi  Su  Wei  Yang  Hua 《中国科学:化学(英文版)》2020,63(6):785-791
A diastereoselectivity-controllable formal [3+2]-cycloaddition of arylvinyl oxirane 2,2-diesters with cyclic N-sulfonyl imines is developed, affording the corresponding tricyclic oxazolidine derivatives in moderate to excellent yields with excellent diastereoselectivities in the presence of palladium(0) or scandium(III) triflate. This protocol allows selective synthesis of diastereomers of tricyclic oxazolidine derivatives under switchable and mild conditions. Further transformations of the obtained products were conducted by removing ester groups and arylvinyl moieties.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号