首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   5篇
化学   71篇
数学   1篇
物理学   12篇
  2022年   1篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2013年   6篇
  2012年   6篇
  2011年   7篇
  2009年   3篇
  2008年   2篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   5篇
  2003年   1篇
  2002年   5篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1996年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1977年   1篇
  1975年   1篇
  1973年   5篇
  1972年   1篇
  1966年   1篇
  1896年   1篇
排序方式: 共有84条查询结果,搜索用时 15 毫秒
41.
42.
The composition and properties of the surface layers of poly(styrene/α-t-butoxy-ω-polyglycidol) [poly(styrene/VB-polyGL)] microspheres synthesized by the radical copolymerization of styrene and α-t-butoxy-ω-vinylbenzyl-polyglycidol (VB-polyGL) macromonomers [number-average molecular weight (Mn) = 950 or 2700] were investigated with X-ray photoelectron spectroscopy, 13C NMR, and the adsorption of human serum albumin and γ-globulins. The number-average diameter of the synthesized microspheres was 220 nm. Their surface layers were rich in polyglycidol, with polyglycidol-to-polystyrene unit ratios of 0.443 (VB-polyGL with Mn = 950) and 0.427 (VB-polyGL with Mn = 2700). In suspensions of poly(styrene/VB-polyGL) particles in D2O, the polymer chains in the polyglycidol-rich surface layers were highly mobile, allowing the registration of polyglycidol 13C NMR spectra with standard procedures for polymer solutions. In these spectra, the signals of the relatively immobile polystyrene segments were absent. The spin–lattice relaxation times (T1) measured for polyglycidol in the microsphere surface layers and for VB-polyGL macromonomers in solution were very close, indicating similar degrees of motion in bound (in particle surface layers) and free (in solution) polyglycidol macromolecules. Studies of protein adsorption revealed that hydrophilic polyglycidol layers were protein-repellent. It was found that longer polyglycidol chains in particle surface layers were more mobile (higher T1 values) and provided better protection against protein adsorption. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 615–623, 2004  相似文献   
43.

The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10−8 to 10−4 mol L−1, and the detection limit is 5.10−8 mol L−1.

This work describes the grafting of a molecularly imprinted polymer (MIP) film by combining diazonium surface chemistry and surface-initiated photopolymerization. The MIP grafts specifically and selectively recognize quercetin in pure solution in THF and in real green tea infusion.

  相似文献   
44.
The food antioxidant quercetin was used as a template in an ultrathin molecularly imprinted polymer (MIP) film prepared by photopolymerization. Indium tin oxide (ITO) plates were electrografted with aryl layers via a diazonium salt precursor bearing two terminal hydroxyethyl groups. The latter act as hydrogen donors for the photosensitizer isopropylthioxanthone and enabled the preparation of MIP grafts through radical photopolymerization of methacrylic acid (the functional monomer) and ethylene glycol dimethacrylate (the crosslinker) in the presence of quercetin (the template) on the ITO. The template was extracted, and the remaining ITO electrode used for the amperometric determination of quercetin at a working potential of 0.26 V (vs. SCE). The analytical range is from 5.10?8 to 10?4 mol L?1, and the detection limit is 5.10?8 mol L?1.
Figure
This work describes the grafting of a molecularly imprinted polymer (MIP) film by combining diazonium surface chemistry and surface-initiated photopolymerization. The MIP grafts specifically and selectively recognize quercetin in pure solution in THF and in real green tea infusion.  相似文献   
45.
A new rout was used for the synthesis of porous solid polysiloxane matrix of the general formula P-(CH2)3N(CH2COOEt)-(CH2)2N(CH2COOEt)-(CH2)2-N(CH2COOEt)2 (where P represents [Si-O]n) by the reaction of diethylenetriaminetrimethoxysilane with ethyl chloroacetate followed by polymerization with tetraethylorthosilicate via the sol gel process. The functionalized diethylenetriaminetetraacetic acid polysiloxane system (P-DETATA) was then obtained by acid hydrolysis of the diethylenetriaminetetraethylacetate functionalized polysiloxane(P-DETATAc). FTIR, 13C, 29Si CP-MAS NMR and XPS methods were used for characterization of their chemical structure. The new functionalized ligand system exhibits high capacity to coordinate with divalent metal ions (Co2+, Ni2+, and Cu2+) than its analogous ligand obtained by postmodification of triamine polysiloxane with ethyl chloroacetate.  相似文献   
46.
A new porous solid macrocyclic 1,4,7,10,14,17,20‐heptaazadocosane‐3,21‐dione polysiloxane ligand system of the general formula P‐(CH2)3‐C15H32O2N5, (where P represents [Si‐O]n siloxane network) has been prepared by the reaction of immobilized iminobis(N‐diethylenediamineacetamide)polysiloxane with 1,3 dibromopropane. The new macrocyclic polysiloxane ligand system exhibits high potential for the uptake of metal ions (Fe3+, Co2+, Ni2+, Cu2+ and Zn2+). Complexation with copper ions exhibits a high selectivity in which two copper ions were involved per one macrocyclic ligand group.  相似文献   
47.
Poly(oligoethylene glycol methacrylate), POEGMA, brushes were prepared by surface‐initiated atom transfer radical polymerization (SI‐ATRP) on gold‐coated silicon wafers. Prior to ATRP, the substrates were grafted by brominated aryl initiators via the electrochemical reduction of a noncommercial parent diazonium salt of the formula BF4?, +N2‐C6H4‐CH(CH3)Br. The diazonium‐modified gold plates (Au‐Br) served as macroinitiators for ATRP of OEGMA which resulted in hydrophilic surfaces (Au‐POEGMA) that could be used for two distinct objectives: (i) resistance to fouling by Salmonella Typhimurium; (ii) specific recognition of the same bacteria provided that the POEGMA grafts are activated by anti‐Salmonella. The Au‐POEGMA plates were characterized by XPS, polarization modulation‐infrared reflection‐absorption spectroscopy (PM‐IRRAS) and contact angle measurements. Both Beer‐Lambert equation and Tougaard's QUASES software indicated a POEGMA thickness that exceeds the critical ~10 nm value necessary for obtaining a hydrophilic polymer with effective resistance to cell adhesion. The Au‐POEGMA slides were further activated by trichlorotriazine (TCT) in order to covalently bind anti‐Salmonella antibodies (AS). The antibody‐modified Au‐POEGMA specimens were found to specifically attach Salmonella Typhimurium bacteria. This work is another example of the diazonium salt/ATRP process to provide biomedical polymer surfaces. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
48.
This critical review summarizes existing knowledge on the use of diazonium salts as a new generation of surface modifiers and coupling agents for binding synthetic polymers, biomacromolecules, and nanoparticles to surfaces. Polymer grafts can be directly grown at surfaces through the so-called grafting from approaches based on several polymerization methods but can also be pre-formed in solution and then grafted to surfaces through grafting onto strategies including "click" reactions. Several routes are also described for binding biomacromolecules through aryl layers in view of developing biosensors and protein arrays, while the use of aryl diazonium coupling agents is extended to the attachment of nanoparticles. Patents and industrial applications of the surface chemistry of diazonium compounds are covered. This review stresses the paramount role of aryl diazonium coupling agents in adhesion, surface and materials sciences (114 references).  相似文献   
49.
50.
Silica-polypyrrole particles have been used as a composite stationary phase for liquid chromatography. Determination of capacity factors (k') of a wide number of polycyclic aromatic hydrocarbon (PAH) molecular probes allows the characterisation of the chromatographic properties of the silica-polypyrrole stationary phase. Capacity factors in the range of 0.10 up to 6.1 were determined, thus demonstrating the high affinity of the PAH probes towards the stationary phase. The selectivity of the composite stationary phase was also evaluated as a function of the planarity of the molecular probes injected. Capacity factors determined for PAHs (two-dimensional molecular probes) are higher than those measured for phenyl-substituted PAHs (phenyl-PAHs, three-dimensional molecular probes). Determination of capacity factors, dependence on the composition of the mobile phase demonstrates the reverse alpha-phase properties of the composite stationary phase. The acid-base properties of the composite silica-polypyrrole stationary phase were investigated using benzene derivative molecular probes (i.e., toluene, phenol, benzoic acid and aniline). Capacity factors in the range of 0.45 to 1.0 were determined. This study clearly demonstrates that this composite stationary phase exhibits selective interactions towards PAHs and phenyl-substituted PAHs and strong acid-base properties depending on the structure, the geometry and the acid-base properties of the molecular probes eluted.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号