首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   14篇
化学   416篇
晶体学   15篇
力学   9篇
数学   24篇
物理学   125篇
  2024年   2篇
  2023年   9篇
  2022年   28篇
  2021年   12篇
  2020年   19篇
  2019年   16篇
  2018年   23篇
  2017年   24篇
  2016年   23篇
  2015年   18篇
  2014年   26篇
  2013年   58篇
  2012年   41篇
  2011年   44篇
  2010年   22篇
  2009年   16篇
  2008年   29篇
  2007年   21篇
  2006年   15篇
  2005年   19篇
  2004年   16篇
  2003年   9篇
  2002年   9篇
  2001年   5篇
  2000年   6篇
  1999年   2篇
  1997年   4篇
  1996年   4篇
  1994年   6篇
  1993年   2篇
  1991年   5篇
  1990年   4篇
  1988年   2篇
  1986年   5篇
  1985年   3篇
  1984年   3篇
  1983年   4篇
  1981年   9篇
  1979年   1篇
  1978年   3篇
  1977年   1篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1967年   1篇
  1963年   1篇
  1929年   1篇
排序方式: 共有589条查询结果,搜索用时 15 毫秒
31.
The fabrication of high quality thin films of poly (vinylidene fluoride) embedded with multiwalled carbon nanotubes using pulsed laser deposition technique is reported. The prepared films were characterized for structural, morphology and dielectric properties. The morphology analysis revealed uniform dispersion of multiwalled carbon nanotubes throughout the polymer matrix. X-ray diffraction results suggested that the poly (vinylidene fluoride) film is in amorphous phase while addition of multiwalled carbon nanotubes showed presence of crystalline peaks in the nanocomposites films. It was interesting to note that the nanocomposite films exhibits significant enhancement of the ferroelectric β-phase as evidenced by the X-ray diffraction and Fourier transform infrared spectroscopy results. The dielectric analysis shows a remarkable enhancement in the dielectric permittivity of nanocomposites with lower loss and conductivity level. The results can be attributed to the formation of minicapacitor network and relatively higher percolation threshold in the nanocomposites.  相似文献   
32.
Journal of Thermal Analysis and Calorimetry - The synthesis of Schiff bases of chitosan is performed by the reaction of chitosan with different heteroaryl aldehydes, i.e., furfuraldehyde,...  相似文献   
33.
Manganese(II) complexes having the general composition Mn(L)2X2 (where L = 3‐bromoacetophenone semicarbazone, 3‐bromoacetophenone thiosemicarbazone, 1‐tetralone semicarbazone, 1‐tetralone thiosemicarbazone, flavanone semicarbazone or flavanone thiosemicarbazone and X = Cl? or ½SO42?) were synthesized. All the complexes were characterized using elemental analyses, molar conductance and magnetic moment measurements, and mass, 1H NMR, infrared, electron paramagnetic resonance and electronic spectral studies. The molar conductance of the complexes in dimethylsulfoxide lies in the range 10–20 Ω?1 cm2 mol?1 indicating their non‐electrolytic nature. All the complexes show magnetic moments corresponding to five unpaired electrons. The possible geometries of the complexes were assigned on the basis of electron paramagnetic resonance, electronic and infrared spectral studies. Some of the synthesized ligands and their complexes were screened for their antifungal activities against fungi Macrophomina phaseolina, Botrytis cinerea and Phoma glomerata using the food poison technique and their antibacterial activities against Xanthomonas campestris pv. campestris and Ralstonia solanacearum using the paper disc diffusion method. They showed appreciable activities.  相似文献   
34.
The present study is carried out for the investigation of energetic ion beam mixing in the Bi/Ge system, induced by electronic excitation. The system Ge/Bi/C was deposited on Si substrate at room temperature in the high vacuum deposition system and irradiated using Au ions of 120?MeV at the fluences 1?×?1013, 5?×?1013 and 1?×?1014?ions/cm2. The top layer of carbon was deposited as the protecting layer to avoid oxidation. The swift heavy ions (SHI)-induced interface mixing was studied by Rutherford backscattering spectroscopy (RBS) for depth profiles and compositions, grazing incidence X-ray diffraction (GIXRD) for phase identification and atomic force microscopy (AFM) for surface roughness. We have calculated the mixing rate, mixing efficiency and inter-diffusion coefficient for the Bi/Ge system. We observed that the thickness of the mixed region increased with increasing fluence. In the GIXRD pattern, no new crystalline phase formation was observed after irradiation, the mixed region may be in an amorphous form. The mixing effect is explained in the framework of the thermal spike model.  相似文献   
35.
The ingestion of contaminated water and food is known to cause food illness. Moreover, on assessing the patients suffering from foodborne disease has revealed the role of microbes in such diseases. Concerning which different methods have been developed for protecting food from microbes, the treatment of food with chemicals has been reported to exhibit an unwanted organoleptic effect while also affecting the nutritional value of food. Owing to these challenges, the demand for natural food preservatives has substantially increased. Therefore, the interest of researchers and food industries has shifted towards fruit polyphenols as potent inhibitors of foodborne bacteria. Recently, numerous fruit polyphenols have been acclaimed for their ability to avert toxin production and biofilm formation. Furthermore, various studies have recommended using fruit polyphenols solely or in combination with chemical disinfectants and food preservatives. Currently, different nanoparticles have been synthesized using fruit polyphenols to curb the growth of pathogenic microbes. Hence, this review intends to summarize the current knowledge about fruit polyphenols as antibacterial agents against foodborne pathogens. Additionally, the application of different fruit extracts in synthesizing functionalized nanoparticles has also been discussed.  相似文献   
36.
The utilization of nanoparticles for a variety of applications has raised much interest in recent years as new knowledge has emerged in nanochemistry. New and diverse methods for synthesis, characterization, and application of these particles have been discovered with differing degrees of ease and reproducibility. Post-synthetic modification of nanoparticles is often a required step to facilitate their use in applications. The reaction conditions and chemical environment for the nanoparticle synthesis may not support or may conflict with further reactions. For this reason, it is beneficial to have phase transfer methods for nanoparticles to allow for their dispersion in a variety of solvents. Phase transfer methods are often limited in the types and sizes of particles that can be effectively dispersed in an immiscible solvent. Currently, general transfer methods for a wide variety of nanoparticles have not been identified. New routes for phase transfer allow for utilization of a larger range of particles in applications which were previously limited by solubility and reactivity issues. In this work, we will describe the fundamental methods for the phase transfer of metallic nanoparticles. We will look at the major problems and pitfalls of these methods. The applications of phase transfer will also be reviewed, mainly focusing on catalysis and drug delivery.  相似文献   
37.
38.
Essential oils derived from six different phenophases, namely early vegetative stage, late vegetative stage, early flowering stage, full flowering stage (FFS), late flowering stage and seed shattering stage of Origanum vulgare L. grown in Kumaon region of Uttarakhand, India were investigated by GC and GC-MS. A total of 38 constituents, representing 97.4-99.7% of the total oil composition, were identified. Major components of oils were thymol (40.9-63.4%), p-cymene, (5.1-25.9%), γ-terpinene (1.4-20.1%), bicyclogermacrene (0.2-6.1%), terpinen-4-ol (3.5-5.9%), α-pinene (1.6-3.1%), 1-octen-3-ol (1.4-2.7%), α-terpinene (1.0-2.2%), carvacrol (<0.1-2.1%), β-caryophyllene (0.5-2.0%) and β-myrcene (1.2-1.9%). Thymol, terpinen-4-ol, 3-octanol, α-pinene, β-pinene, 1,8-cineole, α-cubebene and (E)-β-ocimene were observed to be higher during FFS. The study showed that plant stage had a significant effect on the essential oil content and composition of O. vulgare grown in the hilly tracks of Northern India.  相似文献   
39.
Undoped and silver-doped TiO2 nanoparticles (Ti1?x Ag x O2, where x?=?0.00?C0.10) were synthesized by a sol?Cgel method. The synthesized products were characterized by X-ray diffraction (XRD), particle size analyzer (PSA), scanning electron microscope (SEM), and UV?CVisible spectrophotometer. XRD pattern confirmed the tetragonal structure of synthesized samples. Average crystallite size of synthesized nanoparticles was determined from X-ray line broadening using the Debye?CScherrer formula. The crystallite size was varied from 8 to 33?nm as the calcination temperature was increased from 300 to 800?°C. The incorporation of 3 to 5% Ag+ in place of Ti4+ provoked a decrease in the size of nanocrystals as compared to undoped TiO2. The SEM micrographs revealed the agglomerated spherical-like morphology of particles. SEM, PSA, and XRD measurements show that the particles size of the powder is in nanoscale. Optical absorption measurements indicated a red shift in the absorption band edge upon silver doping. Direct allowed band gap of undoped and Ag-doped TiO2 nanoparticles measured by UV?CVis spectrometer were 3.00 and 2.80?eV, respectively, at 500?°C.  相似文献   
40.
A series of zeolite-Y encapsulated hybrid catalysts, [M(STCH)·xH2O]-Y have been prepared by encapsulating Schiff base complexes [where M?=?Mn(II), Fe(II), Co(II), Ni(II); (x?=?3) and Cu(II); (x?=?1); H2STCH?=?salicylaldehyde thiophene-2-carboxylic hydrazone] in zeolite-Y matrix by flexible ligand method. These hybrid materials have been characterized by various physico-chemical techniques such as ICP-OES, elemental analyses, (FT-IR and electronic) spectral studies, BET, scanning electron micrographs, thermal analysis and X-ray powder diffraction patterns. X-ray powder diffraction analysis reveals that the structural integrity of the mother zeolite in the hybrid material remained intact upon immobilization of the complex. Density functional theory is employed to calculate the relaxed structure, bond angle, bond distance, dihedral angle, difference of highest occupied molecular orbital and lowest unoccupied molecular orbital energies gap and electronic density of states of ligand and their neat transition metal complexes. The hybrid materials are active catalysts for the hydroxylation of phenol using hydrogen peroxide (30% H2O2) as an oxidant in order to selectively synthesize catechol or hydroquinone, amongst them [Cu(STCH)·H2O]-Y shown the highest % of selectivity towards catechol (81.3%).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号