首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   758篇
  免费   67篇
  国内免费   3篇
化学   666篇
力学   14篇
数学   76篇
物理学   72篇
  2023年   13篇
  2022年   18篇
  2021年   30篇
  2020年   35篇
  2019年   18篇
  2018年   11篇
  2017年   12篇
  2016年   58篇
  2015年   32篇
  2014年   44篇
  2013年   30篇
  2012年   55篇
  2011年   76篇
  2010年   25篇
  2009年   13篇
  2008年   51篇
  2007年   45篇
  2006年   45篇
  2005年   32篇
  2004年   36篇
  2003年   21篇
  2002年   26篇
  2001年   9篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   3篇
  1996年   5篇
  1995年   8篇
  1994年   3篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1985年   5篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1968年   2篇
  1957年   3篇
  1956年   3篇
  1944年   2篇
  1936年   1篇
  1935年   1篇
  1931年   1篇
  1930年   1篇
  1921年   1篇
  1899年   2篇
排序方式: 共有828条查询结果,搜索用时 31 毫秒
771.
A series of tripodal imidazole frameworks (TIFs) are reported based on a tripodal, cavity-containing tris(imidazole) derivative. In the case of [Co(3)Cl(6)(1)(2)]·n(solvent) (TIF-1) which possesses a doubly interpenetrated framework structure, the material exhibits rigid, permanent porosity and selectively absorbs CO(2). The non-interpenetrated [Co(1)(2)(H(2)O)(2)]Cl(2)·4H(2)O (TIF-2) also absorbs gases and vapours fully reversibly exhibiting a reversible phase change in the process and considerable conditioning and hysteresis. The very highly hydrated [Co(1)(2)]Cl(2)·22H(2)O (TIF-3) irreversibly dehydrates to the layered structure [Co(1)(2)]Cl(2)·H(2)O (TIF-4). A nickel analogue [Ni(1)(2)]Cl(2)·22H(2)O (TIF-5) closely related to TIF-3 is also reported along with two isostructural, non-porous materials [MCl(2)(1)] (M = Mn, TIF-6; M = Cd, TIF-7) based on d(5) and d(10) Mn(II) and Cd(II). Some of the materials may be prepared by mechanochemical as well as solution based methods. We liken TIF-1 to a gas cylinder, TIF-2 to a sponge and TIF-3 to a fragile soda can that is crushed on emptying to give TIF-4.  相似文献   
772.
The halide-induced ligand rearrangement reaction (HILR) has been employed to provide selective and exclusive in situ formation of heteroligated Rh(I), Pd(II), and Pt(II) complexes with bidentate phosphino-chalcoether ligands. To gain insights on the nature of this unique reaction, we explored this process via the stepwise addition of bidentate phosphino-chalcoether (P, X; X = S or Se) and relevant monodentate phosphine ligands with a Pt(II) metal precursor. The corresponding monoligated complexes were obtained in quantitative yields by reacting 1 equiv of a P, X bidentate ligand with Pt(II) and were fully characterized via single crystal X-ray diffraction studies and heteronuclear ((31)P, (77)Se, and (195)Pt) NMR spectroscopy in solution. These species were further reacted with a second equivalent of either a bidentate ligand or the monodentate ethyl diphenylphosphine ligand, resulting in the clean formation of the heteroligated species or, in the case of the monodentate ligand with an electron-withdrawing bidentate ligand, a mixture of products. On the basis of competitive exchange reactions between these heteroligated, homoligated, and monoligated complexes, we conclude that ligand chelation plays a crucial role in the Pt(II) HILR. The in situ preferable formation of the stable monoligated complex allows for ligand sorting to occur in these systems. In all cases where the heteroligated product results, the driving force to these species is ligand chelation.  相似文献   
773.
The indole alkaloid α-cyclopiazonic acid 1 has been synthesised by a route, which features at its core an acid-catalysed cationic cascade cyclisation terminated by a sulfonamide group.  相似文献   
774.
The analysis of glycosylation from native biological sources is often frustrated by the low abundances of available material. Here, ion mobility combined with electrospray ionization mass spectrometry have been used to extract the spectra of N-glycans released with PNGase F from a serial titration of recombinantly expressed envelope glycoprotein, gp120, from the human immunodeficiency virus (HIV). Analysis was also performed on gp120 expressed in the α-mannosidase inhibitor, and in a matched mammalian cell line deficient in GlcNAc transferase I. Without ion mobility separation, ESI spectra frequently contained no observable ions from the glycans whereas ions from other compounds such as detergents and residual buffer salts were abundant. After ion mobility separation on a Waters T-wave ion mobility mass spectrometer, the N-glycans fell into a unique region of the ion mobility/m/z plot allowing their profiles to be extracted with good signal:noise ratios. This method allowed N-glycan profiles to be extracted from crude incubation mixtures with no clean-up even in the presence of surfactants such as NP40. Furthermore, this technique allowed clear profiles to be obtained from sub-microgram amounts of glycoprotein. Glycan profiles were similar to those generated by MALDI-TOF MS although they were more susceptible to double charging and fragmentation. Structural analysis could be accomplished by MS/MS experiments in either positive or negative ion mode but negative ion mode gave the most informative spectra and provided a reliable approach to the analysis of glycans from small amounts of glycoprotein.  相似文献   
775.
An amphiphile prodrug, 5′-deoxy-5-fluoro-N4-(palmityloxycarbonyl) cytidine or 5′-deoxy-5-fluoro-N4-(hexadecanaloxycarbonyl) cytidine (5-FCPal), consisting of the same head group as the commercially available chemotherapeutic agent Capecitabine, linked to a palmityl hydrocarbon chain via a carbamate bond is reported. Thermal analysis of this prodrug indicates that it melts at ∼115 °C followed quickly by degradation beginning at ∼120 °C. The neat solid 5-FCPal amphiphile acquires a lamellar crystalline arrangement with a d-spacing of 28.6 ± 0.3 Å, indicating interdigitation of the hydrocarbon chains. Under aqueous conditions, solid 5-FCPal is non-swelling and no lyotropic liquid crystalline phase formation is observed. In order to assess the in vitro toxicity and in vivo efficacy in colloidal form, solid lipid nanoparticles (SLNs) with an average size of ∼700 nm were produced via high pressure homogenization. The in vitro toxicity of the 5-FCPal SLNs against several different cancer and normal cell types was assessed over a 48 h period, and IC50 values were comparable to those observed for Capecitabine. The in vivo efficacy of the 5-FCPal SLNs was then assessed against the highly aggressive mouse 4T1 breast cancer model. To do so, the prodrug SLNs were administered orally at 3 different dosages (0.1, 0.25, 0.5 mmol/mouse/day) and compared to Capecitabine delivered at the same dosages. After 21 days of receiving the treatments, the 0.5 mmol dose of 5-FCPal exhibited the smallest average tumour volume. Since 5-FCPal is activated in a similar manner to Capecitabine via a 3 step enzymatic pathway with the final step occurring preferentially at the tumour site, formulation of the prodrug into SLNs combines the advantage of selective, localized activation with the sustained release properties of nanostructured amphiphile self-assembly and multiple payload materials thereby potentially creating a more effective anticancer agent.  相似文献   
776.
The IrIII fragment {Ir(PCy3)2(H)2}+ has been used to probe the role of the metal centre in the catalytic dehydrocoupling of H3B?NMe2H ( A ) to ultimately give dimeric aminoborane [H2BNMe2]2 ( D ). Addition of A to [Ir(PCy3)2(H)2(H2)2][BArF4] ( 1 ; ArF=(C6H3(CF3)2), gives the amine‐borane complex [Ir(PCy3)2(H)2(H3B?NMe2H)][BArF4] ( 2 a ), which slowly dehydrogenates to afford the aminoborane complex [Ir(PCy3)2(H)2(H2B? NMe2)][BArF4] ( 3 ). DFT calculations have been used to probe the mechanism of dehydrogenation and show a pathway featuring sequential BH activation/H2 loss/NH activation. Addition of D to 1 results in retrodimerisation of D to afford 3 . DFT calculations indicate that this involves metal trapping of the monomer–dimer equilibrium, 2 H2BNMe2 ? [H2BNMe2]2. Ruthenium and rhodium analogues also promote this reaction. Addition of MeCN to 3 affords [Ir(PCy3)2(H)2(NCMe)2][BArF4] ( 6 ) liberating H2B? NMe2 ( B ), which then dimerises to give D . This is shown to be a second‐order process. It also allows on‐ and off‐metal coupling processes to be probed. Addition of MeCN to 3 followed by A gives D with no amine‐borane intermediates observed. Addition of A to 3 results in the formation of significant amounts of oligomeric H3B?NMe2BH2?NMe2H ( C ), which ultimately was converted to D . These results indicate that the metal is involved in both the dehydrogenation of A , to give B , and the oligomerisation reaction to afford C . A mechanism is suggested for this latter process. The reactivity of oligomer C with the Ir complexes is also reported. Addition of excess C to 1 promotes its transformation into D , with 3 observed as the final organometallic product, suggesting a B? N bond cleavage mechanism. Complex 6 does not react with C , but in combination with B oligomer C is consumed to eventually give D , suggesting an additional role for free aminoborane in the formation of D from C .  相似文献   
777.
The synthesis and characterization of a series of bis(phosphinic)diamido yttrium alkoxide, amide, and aryloxide initiators are reported. The new complexes are characterized using multinuclear nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, and, in some cases, X-ray crystallography. The alkoxide complexes are all dimeric in both the solid state and in solution, as are the amide complexes substituted with iso-propyl or phenyl groups on the phosphorus atoms. On the other hand, increasing the steric hindrance of the phosphorus substituents (tert-butyl), enables isolation of mononuclear yttrium amide complexes with either 2,2-dimethylpropylene or ethylene diamido ligand backbones. The complex of 2,6-di-tert-butyl-4-methylphenoxide is also mononuclear. All the new complexes are efficient initiators for rac-lactide ring-opening polymerization. The polymerization kinetics are compared and pseudo first order rate constants, k(obs), determined. The polymerization control is also discussed, by monitoring the number-averaged molecular weight, M(n), and polydispersity index, PDI, obtained using gel permeation chromatography (GPC). The alkoxide complexes are the most efficient initiators, showing very high rates and good polymerization control, behavior consistent with rapid rates of initiation. The phenoxide and amide complexes are less efficient as manifest by nonlinear regions in the kinetic plots, lower values for k(obs), and reduced polymerization control. One of the mononuclear yttrium amide complexes shows heteroselectivity in the polymerization of rac-lactide; however, this effect is reduced on changing the initiating group to phenoxide or on changing the ancillary ligand diamido backbone group.  相似文献   
778.
The morphologies that block polymers exhibit under various types of confinement are reviewed with emphasis on experimental results and theoretical predictions. Confining geometries in all three dimensions are considered and special attention is paid to cylindrical and spherical boundary conditions. Past experimental techniques and theoretical understanding are discussed and an outlook for future advances due to the possibility for novel, well ordered and aligned morphologies to occur when polymers are confined between surfaces of varying distance, curvature, and surface chemistry is provided. Confinement creates new morphologies which are not present in the bulk, indicating that the confined thermodynamic boundary conditions result in phase behavior that is distinct from the bulk and that there is the possibility for new phases and order-order transitions to be discovered as future researchers impose new types of confinement and explore a greater range of block polymer architecture, composition and molecular weights. The article concludes with a brief introduction of interference lithography, which can be used to form arbitrary and novel boundary conditions, and a perspective on the future outlook of the phase behavior of confined block polymers.  相似文献   
779.
An improved method for the preparation of 3‐formyl‐1,4‐dimethylcarbazole, a key intermediate in the synthesis of ellipticine, is presented. Conditions of the Vilsmeier‐Haack reaction have been modified to facilitate the production of 3‐formyl‐1,4‐dimethylcarbazole as a major product leading to an overall improvement in yield of ellipticine from 3% to 14%. This approach was also applied to the synthesis of 6‐methylellipticine and 9‐methoxyellipticine. J. Heterocyclic Chem., (2011).  相似文献   
780.
A novel consecutive three-component synthesis of 3-(hetero)aryl-1H-pyrazoles via room temperature Sonogashira arylation of propynal diethylacetal used as a propargyl aldehyde synthetic equivalent has been disclosed. The final acetal cleavage-cyclocondensation with hydrazine hydrochloride at 80 °C rapidly furnishes the title compounds in a one-pot fashion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号