首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   8篇
  国内免费   1篇
化学   69篇
晶体学   1篇
力学   1篇
数学   26篇
物理学   49篇
  2022年   3篇
  2021年   9篇
  2020年   2篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   3篇
  2014年   7篇
  2013年   17篇
  2012年   5篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   4篇
  1997年   1篇
  1994年   5篇
  1993年   1篇
  1991年   1篇
  1990年   5篇
  1989年   7篇
  1988年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1976年   1篇
  1972年   2篇
  1948年   3篇
  1931年   1篇
  1928年   2篇
  1924年   1篇
  1922年   2篇
  1920年   2篇
  1917年   2篇
  1913年   3篇
排序方式: 共有146条查询结果,搜索用时 15 毫秒
71.
72.
In an effort to design efficient low‐cost polymers for use in organic photovoltaic cells the easily prepared donor–acceptor–donor triad of a either cis‐benzobisoxazole, trans‐benzobisoxazole or trans‐benzobisthiazole flanked by two thiophene rings was combined with the electron‐rich 4,8‐bis(5‐(2‐ethylhexyl)‐thien‐2‐yl)‐benzo[1,2‐b:4,5‐b′]dithiophene. The electrochemical, optical, morphological, charge transport, and photovoltaic properties of the resulting terpolymers were investigated. Although the polymers differed in the arrangement and/or nature of the chalcogens, they all had similar highest occupied molecular orbital energy levels (?5.2 to ?5.3 eV) and optical band gaps (2.1–2.2 eV). However, the lowest unoccupied molecular orbital energy levels ranged from ?3.1 to ?3.5 eV. When the polymers were used as electron donors in bulk heterojunction photovoltaic devices with PC71BM ([6,6]‐phenyl C71‐butyric acid methyl ester) as the acceptor, the trans‐benzobisoxazole polymer had the best performance with a power conversion efficiency of 2.8%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 316–324  相似文献   
73.
The effect of Na bentonite, Ca bentonite, and kaolin fillers on the macrostructure and microstructure of acrylonitrile butadiene rubber, ethylene propylene diene rubber, and their blend (50/50) was studied through electrical and mechanical measurements, as well as with positron annihilation lifetime spectroscopy. The real part of permittivity (ε′), dielectric loss (ε″), and the crosslinking density were found to increase with increasing filler content. The increase of crosslinking density of the blend with increasing amount of fillers reflects a decrease in the equilibrium swelling up to 21.50 wt % compared with that of the unfilled blends. The mechanical investigation showed pronounced increase in the tensile strength, and in elongation at break with the addition of up to 21.50 wt % of filler. In addition, comparing between different fillers showed that the reinforcing effect of Na bentonite is more effective than Ca bentonite and kaolin but the physico‐mechanical of Ca bentonite is less than that for kaolin. The positron annihilation lifetime measurements revealed that the free‐volume properties were strongly affected by the amount and type of filler, in particular, the free‐volume fraction was dramatically decreased with increasing filler content. Furthermore, correlations were made between the free‐volume parameters and both electrical and mechanical properties. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1825–1838, 2009  相似文献   
74.
A series of vinylene‐linked copolymers based on electron‐deficient benzobisthiazole and electron‐rich fluorene moieties were synthesized via Horner–Wadsworth–Emmons polymerization. Three different polymers P1 , P2 , and P3 , were prepared bearing octyl, 3,7‐dimethyloctyl, and 2‐(2‐ethoxy)ethoxyethyl side chains, respectively. The polymers all possessed moderate molecular weights, good solubility in aprotic organic solvents, and high fluorescence quantum efficiencies in dilute solutions. P2 , which bore branched 3,7‐dimethyloctyl side chains, exhibited better solubility than the other polymers, but also exhibited the lowest thermal decomposition temperature of all polymers. Overall, the impact of the side chains on the polymers optical properties in solution was negligible as all three polymers gave similar absorption and emission spectra in both solution and film. Guest‐host light‐emitting diodes using dilute blends of the polymers in a poly(N‐vinylcarbazole) host gave blue‐green emission with P2 exhibiting the highest luminous efficiency, 0.61 Cd/A at ~500 nm. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   
75.
76.
77.
Syntheses of some new heterocyclic compounds containing pyridone, thioxopyridine, halogenated‐pyridine‐carbonitriles, pyrazolopyridine, and pyridine derivatives were achieved. Besides, a modified synthetic method for the synthesis of 2‐chloro‐4,6‐dimethyl‐nicotinonitrile ( 3 ) through the reaction of acetylacetone and malononitrile as starting materials was implemented. The reaction of 2‐chloronicotinonitrile 3 with substituted amines to 2‐aminonicotinonitrile were also investigated. Fused or binary pyridines were tested for cytotoxicity against well‐known established model Ehrlich ascites cells in vitro. Compound 13 exhibited a high antitumor activity compared with 5‐fluorouracil.  相似文献   
78.
In a previous series of papers, a semi-analytical model based on Hamilton's principle and spectral analysis has been developed for geometrically non-linear free vibrations occurring at large displacement amplitudes of clamped-clamped beams and fully clamped rectangular homogeneous and composite plates. In Part I of this series of papers, concerned with geometrically non-linear free and forced vibrations of various beams, a practical simple “multi-mode theory”, based on the linearization of the non-linear algebraic equations, written in the modal basis, in the neighbourhood of each resonance has been developed. Simple explicit formulae, ready and easy to use for analytical or engineering purposes have been derived, which allows direct calculation of the basic function contributions to the first three non-linear mode shapes of the beams considered. Also, various possible truncations of the series expansion defining the first non-linear mode shape have been considered and compared with the complete solution, which showed that an increasing number of basic functions has to be used, corresponding to increasingly sized intervals of vibration amplitudes; starting from use of only one function, i.e., the first linear mode shape, corresponding to very small amplitudes, for which the linear theory is still valid, and ending by the complete series, involving six functions, corresponding to maximum vibration amplitudes at the beam middle point up to once the beam thickness. For higher amplitudes, a complementary second formulation has been developed, leading to reproduction of the known results via the solution of reduced linear systems of five equations and five unknowns. The purpose of this paper is to extend and adapt the approach described above to the geometrically non-linear free vibration of fully clamped rectangular plates in order to allow direct and easy calculation of the first, second and higher non-linear fully clamped rectangular plate mode shapes, with their associated non-linear frequencies and non-linear bending stress patterns. Also, numerical results corresponding to the first and second non-linear modes shapes of fully clamped rectangular plates with an aspect ratio α=0·6 are presented. Data concerning the higher non-linear modes, the aspect ratio effect, and the forced vibration case will be presented later.  相似文献   
79.
In recent years there has been a surge in methods to synthesize geometrically and chemically complex microparticles. Analogous to atoms, the concept of a "periodic table" of particles has emerged and continues to be expanded upon. Complementing the natural intellectual curiosity that drives the creation of increasingly intricate particles is the pull from applications that take advantage of such high-value materials. Complex particles are now being used in fields ranging from diagnostics and catalysis to self-assembly and rheology, where material composition and microstructure are closely linked with particle function. This is especially true of polymer hydrogels, which offer an attractive and broad class of base materials for synthesis. Lithography affords the ability to engineer particle properties a priori and leads to the production of homogenous ensembles of particles. This review summarizes recent advances in synthesizing hydrogel microparticles using lithographic processes and highlight a number of emerging applications. We discuss advantages and limitations of current strategies, and conclude with an outlook on future trends in the field.  相似文献   
80.
Consider the nonlinear coupled elliptic system  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号