首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37140篇
  免费   5720篇
  国内免费   3663篇
化学   25819篇
晶体学   358篇
力学   2235篇
综合类   243篇
数学   4301篇
物理学   13567篇
  2024年   112篇
  2023年   764篇
  2022年   1233篇
  2021年   1345篇
  2020年   1450篇
  2019年   1341篇
  2018年   1154篇
  2017年   1075篇
  2016年   1619篇
  2015年   1640篇
  2014年   2016篇
  2013年   2592篇
  2012年   3258篇
  2011年   3222篇
  2010年   2192篇
  2009年   2052篇
  2008年   2211篇
  2007年   1963篇
  2006年   1848篇
  2005年   1543篇
  2004年   1302篇
  2003年   984篇
  2002年   894篇
  2001年   740篇
  2000年   695篇
  1999年   831篇
  1998年   697篇
  1997年   638篇
  1996年   706篇
  1995年   602篇
  1994年   551篇
  1993年   470篇
  1992年   449篇
  1991年   364篇
  1990年   325篇
  1989年   237篇
  1988年   216篇
  1987年   198篇
  1986年   141篇
  1985年   156篇
  1984年   135篇
  1983年   116篇
  1982年   80篇
  1981年   59篇
  1980年   49篇
  1979年   33篇
  1978年   26篇
  1976年   27篇
  1975年   31篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
921.
Polysaccharides, which can be affected by different preparations, play a crucial role in the biological function of Paecilomyces hepiali (PHPS) as a health food. To explore high-valued polysaccharides and reduce the negative influence of human involvement, a green tailorable deep eutectic solvent (DES) was applied to optimize the extraction of polysaccharides (PHPS-D), followed by the evaluation of the structural properties and immunomodulation by comparison with the hot-water method (PHPS-W). The results indicated that the best system for PHPS-D was a type of carboxylic acid-based DES consisting of choline chloride and succinic acid in the molar ratio of 1:3, with a 30% water content. The optimal condition was as follows: liquid–solid ratio of 50 mL/g, extraction temperature of 85 °C, and extraction time of 1.7 h. The actual PHPS-D yield was 12.78 ± 0.17%, which was obviously higher than that of PHPS-W. The structural characteristics suggested that PHPS-D contained more uronic acid (22.34 ± 1.38%) and glucose (40.3 ± 0.5%), with a higher molecular weight (3.26 × 105 g/mol) and longer radius of gyration (78.2 ± 3.6 nm), as well as extended chain conformation, compared with PHPS-W, and these results were confirmed by AFM and SEM. Immunomodulatory assays suggested that PHPS-D showed better performance than PHPS-W regarding pinocytic activity and the secretion of NO and pro-inflammatory cytokines (IL-6, TNF-α and IL-1β) by activating the corresponding mRNA expression in RAW264.7 cells. This study showed that carboxylic acid-based DES could be a promising tailorable green system for acidic polysaccharide preparation and the valorization of P. hepiali in functional foods.  相似文献   
922.
The lack of suitable lightweight current collectors is one of the primary obstacles preventing the energy density of aqueous lithium-ion batteries (ALIBs) from becoming competitive. Using silver nanowire (AgNW) films as current collectors and a molecular crowding electrolyte, we herein report the fabrication of ALIBs with relatively good energy densities. In the 2 m LiTFSI–94% PEG–6% H2O solution, the AgNW films with a sheet resistance of less than 1.0 ohm/square exhibited an electrochemical stability window as broad as 3.8 V. The LiMn2O4//Li4Ti5O12 ALIBs using AgNW films as the current collectors demonstrated an initial energy density of 70 Wh/kg weighed by the total mass of the cathode and anode, which retained 89.1% after 50 cycles.  相似文献   
923.
Determining the different surfaces of oxide nanocrystals is key in developing structure–property relations. In many cases, only surface geometry is considered while ignoring the influence of surroundings, such as ubiquitous water on the surface. Here we apply 17O solid-state NMR spectroscopy to explore the facet differences of morphology-controlled ceria nanocrystals considering both geometry and water adsorption. Tri-coordinated oxygen ions at the 1st layer of ceria (111), (110), and (100) facets exhibit distinct 17O NMR shifts at dry surfaces while these 17O NMR parameters vary in the presence of water, indicating its non-negligible effects on the oxide surface. Thus, the interaction between water and oxide surfaces and its impact on the chemical environment should be considered in future studies, and solid-state NMR spectroscopy is a sensitive approach for obtaining such information. The work provides new insights into elucidating the surface chemistry of oxide nanomaterials.

Both atomic geometry and the influence of surroundings (e.g., exogenously coordinated water) are key issues for determining the chemical environment of oxide surfaces, whereas the latter is usually ignored and should be considered in future studies.  相似文献   
924.
Photoresponsive luminescent materials (PLMs) have attracted much attention in various optoelectronic fields, especially in optical data storage. Multi-wavelength (N-wavelength) based optical storage is a promising approach to increase the data storage density, but its current application is limited by the fact that most PLMs have only two-wavelength emissive states after certain light excitation, which requires simultaneous use of several PLMs and different irradiation light sources. In this study, we discovered that the wavelength of perovskite nanocrystals (PNCs) in the presence of dichloromethane (DCM) could be continuously and precisely tuned over a very wide color range (from red to violet) with the help of a single UV light source. The changes in crystal structures and optical properties of PNCs during UV irradiation were investigated in detail; the effects of capping ligand, solvent, UV irradiation power and time were evaluated, and the mechanism of UV triggered PNC fluorescence change was studied and is discussed. Finally, the applicability of PNCs/DCM film in N-wavelength-based high-density optical data storage was verified.

The perovskite nanocrystals-dichloromethane (PNCs-DCM) with tunable fluorescent color under UV light are a new kind of photoresponsive luminescent materials (PLMs), which are qualified to apply in optical data storage.  相似文献   
925.
The synthesis of air-stable, high-performance single-molecule magnets (SMMs) is of great significance for their practical applications. Indeed, Ln complexes with high coordination numbers are satisfactorily air stable. However, such geometries easily produce spherical ligand fields that minimize magnetic anisotropy. Herein, we report the preparation of three air-stable eight-coordinate mononuclear Dy(iii) complexes with triangular dodecahedral geometries, namely, [Dy(BPA-TPA)Cl](BPh4)2 (1) and [Dy(BPA-TPA)(X)](BPh4)2·nCH2Cl2 (X = CH3O and n = 1 for 2; L = PhO and n = 2 for 3), using a novel design concept in which the bulky heptadentate [2,6-bis[bis(2-pyridylmethyl)amino]methyl]-pyridine (BPA-TPA) ligand enwraps the Dy(iii) ion through weak coordinate bonds leaving only a small vacancy for a negatively charged (Cl), methoxy (CH3O) or phenoxy (PhO) moiety to occupy. Magnetic measurements reveal that the single-molecule magnet (SMM) property of complex 1 is actually poor, as there is almost no energy barrier. However, complexes 2 and 3 exhibit fascinating SMM behavior with high energy barriers (Ueff = 686 K for 2; 469 K for 3) and magnetic hysteresis temperatures up to 8 K, which is attributed to the pseudolinear ligand field generated by one strong, highly electrostatic Dy–O bond. Ab initio calculations were used to show the apparent difference in the magnetic dynamics of the three complexes, confirming that the pseudo-mono-axial ligand field has an important effect on high-performance SMMs compared with the local symmetry. This study not only presents the highest energy barrier for a triangular dodecahedral SMM but also highlights the enormous potential of the pseudolinear Dy–L ligand field for constructing promising SMMs.

Air-stable triangular dodecahedral Dy(iii) single-ion magnets with pseudo-mono-axial linear ligand fields exhibit high energy barrier exceeding 600 K, which represent the highest energy barrier for mononuclear SMMs with triangular dodecahedron.  相似文献   
926.
The shikimate pathway is a necessary pathway for the synthesis of aromatic compounds. The intermediate products of the shikimate pathway and its branching pathway have promising properties in many fields, especially in the pharmaceutical industry. Many important compounds, such as shikimic acid, quinic acid, chlorogenic acid, gallic acid, pyrogallol, catechol and so on, can be synthesized by the shikimate pathway. Among them, shikimic acid is the key raw material for the synthesis of GS4104 (Tamiflu®), an inhibitor of neuraminidase against avian influenza virus. Quininic acid is an important intermediate for synthesis of a variety of raw chemical materials and drugs. Gallic acid and catechol receive widespread attention as pharmaceutical intermediates. It is one of the hotspots to accumulate many kinds of target products by rationally modifying the shikimate pathway and its branches in recombinant strains by means of metabolic engineering. This review considers the effects of classical metabolic engineering methods, such as central carbon metabolism (CCM) pathway modification, key enzyme gene modification, blocking the downstream pathway on the shikimate pathway, as well as several expansion pathways and metabolic engineering strategies of the shikimate pathway, and expounds the synthetic biology in recent years in the application of the shikimate pathway and the future development direction.  相似文献   
927.
The traditional method for the determination of protein in food needs the operations of digestion, distillation, absorption, and titration; therefore, it is complicated and time-consuming and requires professional personnel. Is there a more convenient and faster detection method that can directly determine the ammonium ions in protein digestion solution to obtain the protein content of food and avoid the distillation–absorption–titration process? The feasibility of water ammonium ion test kits for food protein rapid detection was discussed here. After digestion, the protein in food transforms into ammonium ions in the digestion solution. Because of the variety of food, there are many different inorganic ions left in the food digestion solution, and at the same time, digestion agents are added in the digestion process and become potential interference factors in ammonium determination. Therefore, the detection accuracy of ammonium test kits needs to be evaluated first, including their anti-interference ability. The standard curve of ammonium was established by the test kit. When the ammonium concentration was 0.00–2.50 mg/L, the absorbance at 620 nm was linearly related to the ammonium concentration, the determination coefficient R2 was 0.9995, and the detection limit of this method was 0.01 mg/L. The influences of temperature, pH value, and reaction time on the test kit method were discussed. The precision was 0.90–3.33%; the repeatability was 1.71–4.86%; and the recovery rate of tap water, river water, and sea water was controlled within 90–103%. The anti-interference ability of the evaluated test kit was better than that of the national standard detection method. The test kit, combined with sample pretreatment and protein conversion formula, was used to detect protein in different types of food (milk powder, rice flour, wheat flour, soy, banana, milk, fish food, chicken food, and dog food). The results showed that there were no significant differences (ρ > 0.05) between the national method and the test kit method. The ammonium ion test kit method shortened the determination time and had higher sensitivity, showing its potential for the rapid determination of food protein.  相似文献   
928.
To explore the drying characteristics of soybean dregs and a nondestructive moisture content test method, in this study, soybean dregs were dried with hot air (80 °C), the moisture content was measured using the drying method, water status was analyzed using low-field nuclear magnetic resonance (LF-NMR) and the moisture content prediction models were built and validated. The results revealed that the moisture contents of the soybean dregs were 0.57 and 0.01 g/g(w.b.), respectively, after drying for 5 and 7 h. The effective moisture diffusivity increased with the decrease in moisture content; it ranged from 5.27 × 10−9 to 6.96 × 10−8 m2·s−1. Soybean dregs contained bound water (T21), immobilized water (T22) and free water (T23 and T23’). With the proceeding of drying, all of the relaxation peaks shifted left until a new peak (T23’) appeared; then, the structure of soybean dregs changed, and the relaxation peaks reformed, and the peak shifted left again. The peak area may predict the moisture content of soybean dregs, and the gray values of images predict the moisture contents mainly composed of free water or immobilized water. The results may provide a reference for drying of soybean dregs and a new moisture detection method.  相似文献   
929.
Carbamazepine (CBZ), as a typical pharmaceutical and personal care product (PPCP), cannot be efficiently removed by the conventional drinking water and wastewater treatment process. In this work, the CoS2/Fe2+/PMS process was applied for efficient elimination of CBZ. The CBZ removal efficiency of CoS2/Fe2+/PMS was 2.5 times and 23 times higher than that of CoS2/PMS and Fe2+/PMS, respectively. The intensity of DMPO-HO• and DMPO-SO4 followed the order of Fe2+/PMS < CoS2/PMS < CoS2/Fe2+/PMS, also suggesting the CoS2/Fe2+/PMS process has the highest oxidation activity. The effects of reaction conditions (e.g., CoS2 dosage, Fe2+ concentration, PMS concentration, initial CBZ concentration, pH, temperature) and water quality parameters (e.g., SO42, NO3, H2PO4, Cl, NH4+, humic acid) on the degradation of CBZ were also studied. Response surface methodology analysis was carried out to obtain the best conditions for the removal of CBZ, which are: Fe2+ = 70 µmol/L, PMS = 240 µmol/L, CoS2 = 0.59 g/L. The sustainability test demonstrated that the repeated use of CoS2 for 8 successive cycles resulted in little function decrease (<10%). These findings suggest that CoS2/Fe2+/PMS may be a promising method for advanced treatment of tailwater from sewage treatment plant.  相似文献   
930.
Community detection and structural hole spanner (the node bridging different communities) identification, revealing the mesoscopic and microscopic structural properties of complex networks, have drawn much attention in recent years. As the determinant of mesoscopic structure, communities and structural hole spanners discover the clustering and hierarchy of networks, which has a key impact on transmission phenomena such as epidemic transmission, information diffusion, etc. However, most existing studies address the two tasks independently, which ignores the structural correlation between mesoscale and microscale and suffers from high computational costs. In this article, we propose an algorithm for simultaneously detecting communities and structural hole spanners via hyperbolic embedding (SDHE). Specifically, we first embed networks into a hyperbolic plane, in which, the angular distribution of the nodes reveals community structures of the embedded network. Then, we analyze the critical gap to detect communities and the angular region where structural hole spanners may exist. Finally, we identify structural hole spanners via two-step connectivity. Experimental results on synthetic networks and real networks demonstrate the effectiveness of our proposed algorithm compared with several state-of-the-art methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号