首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   18篇
化学   286篇
晶体学   3篇
力学   3篇
数学   12篇
物理学   13篇
  2023年   4篇
  2022年   8篇
  2021年   8篇
  2020年   9篇
  2019年   9篇
  2018年   3篇
  2017年   1篇
  2016年   11篇
  2015年   6篇
  2014年   7篇
  2013年   11篇
  2012年   20篇
  2011年   25篇
  2010年   10篇
  2009年   9篇
  2008年   25篇
  2007年   17篇
  2006年   22篇
  2005年   15篇
  2004年   22篇
  2003年   9篇
  2002年   16篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
251.
The low‐lying electronic excited states of [Re(imidazole)(CO)3(phen)]+ (phen = 1,10‐phenanthroline) ranging between 420 nm and 330 nm have been calculated by means of relativistic spin‐orbit time‐dependent density functional theory (TD‐DFT) and wavefunction approaches (state‐average‐CASSCF/CASPT2). A direct comparison between the theoretical absorption spectra obtained with different methods including SOC and solvent corrections for water points to the difficulties at describing on the same footing the bands generated by metal‐to‐ligand charge transfer (MLCT), intraligand (IL) transition, and ligand‐to‐Ligand‐ charge transfer (LLCT). While TD‐DFT and three‐roots‐state‐average CASSCF (10,10) reproduce rather well the lowest broad MLCT band observed in the experimental spectrum between 420 nm and 330 nm, more flexible wavefunctions enlarged either by the number of roots or by the number of active orbitals and electrons destabilize the MLCT states by introducing IL and LLCT character in the lowest part of the absorption spectrum. © 2016 Wiley Periodicals, Inc.  相似文献   
252.
The reactions of different silver(I) reagents AgX (X?=iodide, trifluoroacetate, triflate) with selenoethers R2Se (R=Me, tBu) in a variety of solvents were investigated in relation with their use as precursors for Ag2Se nanomaterials. Different reaction conditions led to different reactivities and afforded either molecular complexes or metal selenide nanoparticles. The reactions leading to in situ formation of the metal selenide nanoparticles were then extended in the presence of commercial TiO2 (P25) to prepare silver selenide–titania nanocomposites with different Ag/Ti ratios. These nanocomposites, well characterized by elemental analysis (Ag, Se), PXRD, TEM, BET, XPS and UV/Vis studies, were investigated as photocatalysts for the degradation of formic acid (FA) solution. The xAg2Se‐TiO2 nanocomposites (x=0.01, 0.13 and 0.25 mol %) exhibited a much higher catalytic activity as compared to P25, which is an established benchmark for the photocatalysis under UV light, and retained a good photocatalytic stability after recycling for several times.  相似文献   
253.
Three boron diketonate chromophores with extended π‐conjugated backbone were prepared and their spectroscopic features were investigated through a combined theoretical/experimental study. It was shown that these complexes, which undergo very large electronic reorganization upon photoexcitation, combine large two‐photon absorption cross section with an emission energy and quantum efficiency in solution that is strongly dependent on solvent polarity. The strong positive influence of boron complexation on the magnitude of the two‐photon absorption was clearly established, and it was shown that the two‐photon absorption properties were dominated by the quadrupolar term. For one of the synthesized compounds, intense one‐ and two‐photon‐induced solid‐state emission (fluorescence quantum yield of 0.65 with maximum wavelength of 610 nm) was obtained as a result of antiparallel J‐aggregate crystal packing.  相似文献   
254.
Over recent decades, the pipeline of antibiotics acting against Gram-negative bacteria is running dry, as most discovered candidate antibiotics suffer from insufficient potency, pharmacokinetic properties, or toxicity. The darobactins, a promising new small peptide class of drug candidates, bind to novel antibiotic target BamA, an outer membrane protein. Previously, we reported that biosynthetic engineering in a heterologous host generated novel darobactins with enhanced antibacterial activity. Here we utilize an optimized purification method and present cryo-EM structures of the Bam complex with darobactin 9 (D9), which served as a blueprint for the biotechnological generation of twenty new darobactins including halogenated analogs. The newly engineered darobactin 22 binds more tightly to BamA and outperforms the favorable activity profile of D9 against clinically relevant pathogens such as carbapenem-resistant Acinetobacter baumannii up to 32-fold, without observing toxic effects.  相似文献   
255.
Organic pollutant removal is the main field of water photocatalytic decontamination. Molecules such as pesticides (herbicides, insecticides, fungicides, etc.) or dyes are totally destroyed and mineralized into CO2 and innocuous inorganic anions (Cl?, SO 4 2? , NO 3 ? ). Presently, two azo-dyes (i.e., containing the-N=N-azo group), Cibacron Brilliant Red 3B-A and Remazol Black B (Reactive Black 5), were successfully destroyed and totally mineralized. The stoichiometric coefficients of the total degradation, as well as the mass balances have been established with different analytical tools: TOC for carbon, DCO for oxygen, ionic-HPLC for heteroatoms (N, S, P) and pH-metry for hydrogen. Moreover, nitrogen balance has been established during the photocatalytic degradation of the dyes by considering not only nitrate and ammonium ions in the solution, but also the formation of N2 in the gas phase. The quantification of N2 molecules suggests that the photocatalytic degradation of azo-compounds is 100% selective in generating gaseous dinitrogen. The reaction mechanism was first determined in a laboratory photoreactor, before degradation in larger pilot solar photoreactors, using UV-A radiant flux from the sun in a new sub-discipline called heliophotocatalysis.  相似文献   
256.
The absorption spectroscopy of [Ru(phen)2dppz]2+ and [Ru(tap)2dppz]2+ (phen = 1,10-phenanthroline, tap = 1,4,5,8-tetraazaphenanthrene; dppz = dipyridophenazine) complexes used as molecular light switches by intercalation in DNA has been analysed by means of Time-Dependent Density Functional Theory (TD-DFT). The electronic ground state structures have been optimized at the DFT (B3LYP) level of theory. The absorption spectra are characterized by a high density of excited states between 500 nm and 250 nm. The absorption spectroscopy of [Ru (phen)2dppz]2+ in vacuum is characterized by metal-to-ligand-charge-transfer (MLCT) transitions corresponding to charge transfer from Ru(II) either to the phen ligands or to the dppz ligand with a strong MLCT () absorption at 411 nm. In contrast, the main feature of the lowest part of the vacuum theoretical spectrum of [Ru(tap)2dppz]2+ between 522 nm and 400 nm is the presence of various excited states such as MLCT (), ligand-to-ligand-charge-transfer LLCT () or intra-ligand IL () states. When taking into account solvent corrections within the polarizable continuum model (PCM) approach (H2O, CH3CN) the absorption spectrum of [Ru(tap)2dppz]2+ is dominated by a strong absorption at 388 nm (CH3CN) or 390 nm (H2O) assigned to a 1IL () corresponding to a charge transfer from the outside end of the dppz ligand to the site of coordination to Ru(II). These differences in the absorption spectra of the two Ru(II) complexes have dramatic effects on the mechanism of deactivation of these molecules after irradiation at about 400 nm. In particular, the electronic deficiency at the outside end of the dppz ligand created by absorption to the 1IL state will favour electron transfer from the guanine to the Ru(II) complex when it is intercalated in DNA.  相似文献   
257.
Transfusion medicine is a field that has developed in the second half of the last century. Very rapidly, however, it became clear that this approach also carried its problems, such as the incompatibility of red blood cells and plasma between donors and recipients, and the possibility of transmitting viral and bacterial infections. An immunomagnetic biosensor for the label-free detection of a bacterial model, Escherichia coli, is described and compared to a self assembled multilayer system reported previously. The paramagnetic nanoparticles layer attracted to, and formed on, the gold electrode surface via a magnetic field up to 300 mT is not totally blocking for the redox probe comparing to the thiol self assembled monolayer (a biotin thiol and a spacer thioalcohol). Moreover, the modeling of the Nyquist spectra obtained by electrochemical impedance spectroscopy for increasing concentrations of E. coli shows for both system a sigmoid variation of the polarization resistance with increasing logarithmic concentration of bacteria. A sensitivity slope of 10.675 was obtained for the immunomagnetic sensor compared to 6.832 for the self assembled multilayer process, this indicating the higher sensitivity of the paramagnetic nanoparticles biosensor.  相似文献   
258.
259.
New helper lipids, possessing an imidazole polar head, have been synthesized and included in formulations for transfection assays; these new helper lipids can improve the transfection by a factor of up to 100 compared to the use of DOPE as co-lipid.  相似文献   
260.
The concept of cyanine has been successfully extended to an anionic heptamethine dye featuring tricyanofuran (TCF) moieties in terms of structure, reactivity, and photophysical properties. Importantly, absorption and emission are red-shifted compared to its classical cationic analog without any cost in terms of thermal stability. In addition to its "cyanine" behavior, this molecule exhibits further redox properties: oxidation and reduction led to the reversible formation of radical species whose absorption is in marked contrast with that of cyanines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号