首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   18篇
化学   286篇
晶体学   3篇
力学   3篇
数学   12篇
物理学   13篇
  2023年   4篇
  2022年   8篇
  2021年   8篇
  2020年   9篇
  2019年   9篇
  2018年   3篇
  2017年   1篇
  2016年   11篇
  2015年   6篇
  2014年   7篇
  2013年   11篇
  2012年   20篇
  2011年   25篇
  2010年   10篇
  2009年   9篇
  2008年   25篇
  2007年   17篇
  2006年   22篇
  2005年   15篇
  2004年   22篇
  2003年   9篇
  2002年   16篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   6篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1973年   1篇
排序方式: 共有317条查询结果,搜索用时 15 毫秒
231.
232.
Thioredoxin controls the intracellular redox potential through a disulfide/dithiol couple. Under conditions of oxidative stress, this protein functions via one-electron exchange, in which formation of the disulfide radical anion occurs. Combined quantum mechanical (QM) and molecular mechanical (MM) calculations using two- and three-level ONIOM schemes were performed on the thioredoxin (Trx) protein of Chlamydomonas reinhardtii in its oxidized-disulfide and one-electron-reduced forms. In both cases, the active site disulfide moiety was described at the MP2(fc)/6-31+G(d) level, and larger regions of varying sizes around the active site were described at the B3LYP/6-31+G(d) level. The remainder of the 112 residues and 33 water molecules of the crystal structure (PDB entry 1EP7) were described by the AMBER force field. Adiabatic electron affinities were calculated for the disulfide bond in all systems. Separate QM or QM/QM calculations were performed on the QM regions to establish the role of the remainder of the protein on the active site properties. The radical anion species becomes more stable as the number of amide groups in the vicinity increases. One-electron reduction potentials were calculated for the small molecule models, and approximated for the protein for which the values are similar to the experimental one (approximately 0 V). This high reduction potential is due to interaction with the charged end of Lys40, as indicated by mutation in silico to norleucine. The inclusion of the protonated Asp30 side chain and a water molecule in the QM region leads to an increase in the electron affinity. Proton transfer from the Asp30 side chain to the Cys39 sulfur in the radical anion species is strongly disfavored. The radical anion is more stable than the protonated form, which is consistent with experimental results.  相似文献   
233.
The electronic excited state reactivity of [Mn(im)(CO)3(phen)]+ (phen = 1,10-phenanthroline; im = imidazole) ranging between 420 and 330 nm have been analyzed by means of relativistic spin–orbit time-dependent density functional theory and wavefunction approaches (state-average-complete-active-space self-consistent-field/multistate CAS second-order perturbation theory). Minimum energy conical intersection (MECI) structures and connecting pathways were explored using the artificial force induced reaction (AFIR) method. MECIs between the first and second singlet excited states (S1/S2-MECIs) were searched by the single-component AFIR (SC-AFIR) algorithm combined with the gradient projection type optimizer. The structural, electronic, and excited states properties of [Mn(im)(CO)3(phen)]+ are compared to those of the Re(I) analogue [Re(im)(CO)3(phen)]+. The high density of excited states and the presence of low-lying metal-centered states that characterize the Mn complex add complexity to the photophysics and open various dissociative channels for both the CO and imidazole ligands. © 2018 Wiley Periodicals, Inc.  相似文献   
234.
235.
236.
Protein–protein assemblies act as a key component in numerous cellular processes. Their accurate modeling at the atomic level remains a challenge for structural biology. To address this challenge, several docking and a handful of deep learning methodologies focus on modeling protein–protein interfaces. Although the outcome of these methods has been assessed using static reference structures, more and more data point to the fact that the interaction stability and specificity is encoded in the dynamics of these interfaces. Therefore, this dynamics information must be taken into account when modeling and assessing protein interactions at the atomistic scale. Expanding on this, our review initially focuses on the recent computational strategies aiming at investigating protein–protein interfaces in a dynamic fashion using enhanced sampling, multi-scale modeling, and experimental data integration. Then, we discuss how interface dynamics report on the function of protein assemblies in globular complexes, in fuzzy complexes containing intrinsically disordered proteins, as well as in active complexes, where chemical reactions take place across the protein–protein interface.  相似文献   
237.
238.
Cyclomarins are highly potent antimycobacterial and antiplasmodial cyclopeptides isolated from a marine bacterium (Streptomyces sp.). Previous studies have identified the target proteins and elucidated a novel mode of action, however there are currently only a few studies examining the structure–activity relationship (SAR) for both pathogens. Herein, we report the synthesis and biological evaluation of 17 novel desoxycyclomarin-inspired analogues. Optimization via side chain modifications of the non-canonical amino acids led to potent lead structures for each pathogen.  相似文献   
239.
Research on Chemical Intermediates - The utilization of TiO2-based photocatalysts for an efficient removal of dye pollutants is limited due to their low surface area, high recombination rate of the...  相似文献   
240.
Since the seminal contribution of Rolf Huisgen to develop the [3+2] cycloaddition of 1,3-dipolar compounds, its azide–alkyne variant has established itself as the key step in numerous organic syntheses and bioorthogonal processes in materials science and chemical biology. In the present study, the copper(I)-catalyzed azide–alkyne cycloaddition was applied for the development of a modular molecular platform for medical imaging of the prostate-specific membrane antigen (PSMA), using positron emission tomography. This process is shown from molecular design, through synthesis automation and in vitro studies, all the way to pre-clinical in vivo evaluation of fluorine-18- labeled PSMA-targeting ‘F-PSMA-MIC’ radiotracers (t1/2=109.7 min). Pre-clinical data indicate that the modular PSMA-scaffold has similar binding affinity and imaging properties to the clinically used [68Ga]PSMA-11. Furthermore, we demonstrated that targeting the arene-binding in PSMA, facilitated through the [3+2]cycloaddition, can improve binding affinity, which was rationalized by molecular modeling. The here presented PSMA-binding scaffold potentially facilitates easy coupling to other medical imaging moieties, enabling future developments of new modular imaging agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号