首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1144篇
  免费   52篇
  国内免费   48篇
化学   865篇
晶体学   10篇
力学   34篇
数学   83篇
物理学   252篇
  2023年   9篇
  2022年   28篇
  2021年   27篇
  2020年   17篇
  2019年   24篇
  2018年   8篇
  2017年   7篇
  2016年   23篇
  2015年   28篇
  2014年   50篇
  2013年   52篇
  2012年   74篇
  2011年   101篇
  2010年   59篇
  2009年   77篇
  2008年   94篇
  2007年   74篇
  2006年   80篇
  2005年   51篇
  2004年   33篇
  2003年   27篇
  2002年   28篇
  2001年   19篇
  2000年   18篇
  1999年   14篇
  1998年   12篇
  1997年   19篇
  1996年   14篇
  1995年   12篇
  1994年   16篇
  1993年   11篇
  1992年   13篇
  1991年   7篇
  1990年   8篇
  1989年   5篇
  1988年   6篇
  1987年   4篇
  1986年   8篇
  1985年   8篇
  1983年   3篇
  1982年   4篇
  1981年   6篇
  1980年   8篇
  1978年   5篇
  1977年   3篇
  1976年   8篇
  1975年   5篇
  1974年   12篇
  1973年   12篇
  1964年   2篇
排序方式: 共有1244条查询结果,搜索用时 19 毫秒
941.
Hsieh MM  Chang HT 《Electrophoresis》2005,26(1):187-195
On-line concentration and separation of biologically active amines and acids by capillary electrophoresis (CE) in conjunction with laser-induced fluorescence using an Nd:YAG laser at 266 nm under discontinuous conditions is presented. The suitable conditions for simultaneous analysis of amines and acids were: samples were prepared in a solution (pH* 3.1) consisting of 10 mM citric acid, 89% acetonitrile (ACN), and water; a capillary was filled with 1.5 M Tris-borate (TB) buffer (pH 10.0); and the anodic vial contained PTG10 buffer (pH* 9.0) that consists of 50 mM propanoic acid, Tris, 10% glycerol, and water. After injecting a large-volume sample, amines and acids were separately stacked at the front (cathodic side) and back (anodic side) of the acidic sample zone, mainly because of changes in their electrophoretic mobilities as a result of changes in pH, viscosity, and electric field when high voltage was applied. When the sample was injected at 15 kV for 360 s, the concentration limits of detection (LODs) for 5-hydroxytryptamine (5-HT) and 5-hydroxyindole-3-acetic acid (5-HIAA) were 0.27 and 0.31 nM, respectively, which are about 400- and 800-fold sensitivity improvements when compared to those injected at 1 kV for 10 s. For the analysis of amines, samples were prepared in 100 mM citric acid (pH* 1.8) containing 89% ACN and both the capillary and anodic vial were filled with 400 mM PTG20 (propanoic acid, Tris, 20% glycerol, and water) at pH* 4.5. Using a large injection volume (15 kV for 360 s), we achieved concentration LODs of 17 pM and 0.3 nM for tryptamine and epinephrine, which are about 5200- and 14,000-fold sensitivity improvements, respectively, in comparison with those injected at 1 kV for 10 s. The features of simplicity (no sample pretreatment), rapidity (12 min), and sensitivity for identification of amines and acids of interest in urine samples show diagnostic potential of the two approaches developed in this study.  相似文献   
942.
Fuh MR  Hsieh CJ  Tai YL 《Talanta》1999,49(5):158-1075
This paper describes a newly developed high performance liquid chromatography/electrospray/mass spectrometry (HPLC/ES/MS) method for the determination of flunarizine (FZ) in artificial cerebrospinal fluid. The optimization for the detection of FZ in biological fluid by LC/ES/MS was investigated. The effects of solvent composition, the addition of modifier and flow rate on the detection of FZ by ES/MS were examined. The detection limit of this method (0.8 nM) proved to be much better than previously reported methods. Satisfactory accuracy (98.2–106.0%) of this newly developed method was obtained. The application of this method was demonstrated by analyzing FZ in rat microdialysis samples.  相似文献   
943.
An improved, simple, and efficient method for the synthesis of lactose‐containing monomer acrylamidolactamine (LAM) has been reported. Free radical copolymerization of this monomer with N‐isopropylacrylamide (NIPAM) in the presence of the crosslinking reagent N,N′‐methylenebisacrylamide (BisA) (1.2 mol %) proceeded smoothly in an aqueous solution using potassium persulfate (KPS) and N,N,N′,N′‐tetramethylethylenediamine (TMEDA) as the initiating system and gave transparent hydrogels. Reactivity ratios were estimated from copolymerization reactions carried out in solution without BisA crosslinker and at low conversion, by using both linearization and nonlinearization methods. They were found to be rLAM = 0.75 and rNIPAM = 1.22. The swelling behavior of the hydrogels was studied by immersion of the hydrogels in deionized water at different temperatures. Equilibrium water uptake was increased when the LAM content was higher than 47 mol %, and reached ≈ 44‐fold with 100 mol % LAM at room temperature. Depending on the composition, the gels showed sharp swelling transitions with small changes in temperature. Differential scanning calorimetry (DSC) was used to characterize the swelling transition and the organization of water in the copolymer hydrogels. The amounts of freezable water in these hydrogels ranged from 81 to 89%, and was not correlated to the content of the sugar monomer. These gels have potential applications as biocompatible materials. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1393–1402, 1999  相似文献   
944.
Molecular glass material (4-(5-(4-(diphenylamino)phenyl)-2-oxadiazolyl)phenyl)triphenylsilane (Ph(3)Si(PhTPAOXD)) was used as the blue light-emitting material in the fabrication of high-performance organic light-emitting diodes (OLEDs). In the optimization of performance, five types of OLEDs were constructed from Ph(3)Si(PhTPAOXD): device I, ITO/NPB/Ph(3)Si(PhTPAOXD)/Alq(3)/Mg:Ag, where NPB and Alq(3) are 1,4-bis(1-naphylphenylamino)biphenyl and tris(8-hydroxyquinoline)aluminum, respectively; device II, ITO/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where TPBI is 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene; device III, ITO/Ph(2)Si(Ph(NPA)(2))(2)/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag, where Ph(2)Si(Ph(NPA)(2))(2) is bis(3,5-bis(1-naphylphenylamino)phenyl)-diphenylsilane, a newly synthesized tetraphenylsilane-containing triarylamine as hole-transporting material; device IV, ITO/Ph(2)Si(Ph(NPA)(2))(2)/NPB/Ph(3)Si(PhTPAOXD)/TPBI/Mg:Ag; device V, ITO/CuPc/NPB /Ph(3)Si(PhTPAOXD)/Alq(3)/LiF/Al, where CuPc is Cu(II) phthalocyanine. Device performances, including blue color purity, electroluminescence (EL) intensity, current density, and efficiency, vary drastically by changing the device thickness (100-600 A of the light-emitting layer) and materials for hole-transporting layer (NPB and/or Ph(2)Si(Ph(NPA)(2))(2)) or electron-transporting material (Alq(3) or TPBI). One of the superior OLEDs is device IV, showing maximum EL near 19 000 cd/m(2) with relatively low current density of 674 mA/cm(2) (or near 3000 cd/m(2) at 100 mA/cm(2)) and high external quantum efficiency of 2.4% (1.1 lm/W or 3.1 cd/A). The device possesses good blue color purity with EL emission maximum (lambda(max)(EL)) at 460 nm, corresponding to (0.16, 0.18) of blue color chromaticity on CIE coordinates. In addition, the device is reasonably stable and sustains heating over 100 degrees C with no loss of luminance on the basis of the annealing data for device V. Formation of the exciplex at the interface of NPB and Ph(3)Si(PhTPAOXD) layers is verified by EL and photoluminescence (PL) spectra studies on the devices with a combination of different charge transporting materials. The EL due to the exciplex (lambda(max)(EL) at 490-510 nm) can be properly avoided by using a 200 A layer of Ph(3)Si(PhTPAOXD) in device I, which limits the charge-recombination zone away from the interface area.  相似文献   
945.
Chan SA  Chen MJ  Liu TY  Fuh MR  Deng JF  Wu ML  Hsieh SJ 《Talanta》2003,60(4):679-685
This paper describes a liquid chromatography-electrospray-ion trap mass spectrometry (LC-ES-ITMS) method for the determination of aristolochic acid I and II (AA-I and AA-II) in medicinal plants and Chinese herbal remedies. A reversed phase C18 column with gradient elution was utilized. The effects of mobile phase additives, acetic acid and ammonium acetate, on LC separation and ES ionization were investigated. For both AA-I and AA-II, the [M+NH4]+ ion was found to be the precursor ion for target MS/MS analysis. The MS/MS product ion, [M+H−44]+, was used for the quantitative measurement of AA-I and AA-II. The linearity was good from 0.03 to 5 μg ml−1 and good correlation (r2=0.999) over the range examined was determined for both AA. The detection limit based on a signal-to-noise ratio of three was 0.012 and 0.015 μg ml−1 for AA-I and AA-II, respectively. Various Chinese herbal remedies obtained from renal failure patients and medicinal plants were examined by this newly developed method.  相似文献   
946.
Multi‐l ‐arginyl‐poly‐l ‐aspartic acid (MAPA), also known as cyanophycin, can incorporate lysine into the side‐chain position of arginine when being prepared with recombinant Escherichia coli. The soluble fraction (sMAPA) is known to display both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) responses at the physiological condition. In an attempt to alter the UCST thermal response, maltodextrin was employed to conjugate onto the amine group of lysine of sMAPA via the formation of Schiff base. In phosphate buffered saline, the UCST of the conjugates appeared around 50–62°C, depending on the extent of conjugation. In contrast to the unmodified sMAPA, the UCST of the conjugate became independent of pH ranging from 1 to 11. Heating the conjugate solution to complete transparent caused a delayed and partial recovery of the original turbidity during subsequent cooling. However, the turbidity can be restored by further precipitation with ethanol or isopropanol followed lyophilization and re‐dissolution. At room temperature, below UCST, the agglomerates exhibited a size of around 200–400 nm under TEM and DLS. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2048–2055  相似文献   
947.
We conducted the title reaction using a crossed molecular-beam apparatus, quantum-chemical calculations, and RRKM calculations. Synchrotron radiation from an undulator served to ionize selectively reaction products by advantage of negligibly small dissociative ionization. We observed two products with gross formula C(2)H(3)N and C(2)H(2)N associated with loss of one and two hydrogen atoms, respectively. Measurements of kinetic-energy distributions, angular distributions, low-resolution photoionization spectra, and branching ratios of the two products were carried out. Furthermore, we evaluated total branching ratios of various exit channels using RRKM calculations based on the potential-energy surface of reaction N((2)D)+C(2)H(4) established with the method CCSD(T)/6-311+G(3df,2p)//B3LYP/6-311G(d,p)+ZPE[B3LYP/6-311G(d,p)]. The combination of experimental and computational results allows us to reveal the reaction dynamics. The N((2)D) atom adds to the C=C π-bond of ethene (C(2)H(4)) to form a cyclic complex c-CH(2)(N)CH(2) that directly ejects a hydrogen atom or rearranges to other intermediates followed by elimination of a hydrogen atom to produce C(2)H(3)N; c-CH(2)(N)CH+H is the dominant product channel. Subsequently, most C(2)H(3)N radicals, notably c-CH(2)(N)CH, further decompose to CH(2)CN+H. This work provides results and explanations different from the previous work of Balucani et al. [J. Phys. Chem. A, 2000, 104, 5655], indicating that selective photoionization with synchrotron radiation as an ionization source is a good choice in chemical dynamics research.  相似文献   
948.
This paper describes a simple procedure for the direct analysis and determination of multiple elements in dried blood samples on a filter membrane using laser ablation coupled with inductively coupled plasma mass spectrometry (LA-ICP-MS). With this technique, we simultaneously quantified 13 elements in whole blood: Be, Mn, Co, Ni, Tl, Bi, Sb, Pb, Cu, Zn, Ba, Mg, and Cd. The measured accuracies was in agreement with the Seronorm CRM certified values, except for Mn, Zn, Ba and Cd, which presented absolute differences higher than the expanded uncertainty for these elements. The within-run precision was less than 5.7% (relative standard deviation, RSD), except for the analyses of Be, and Mn (8.6% and 11.1%, respectively). The reproducibility (between-run precision) was calculated in terms of the RSD obtained for 12 analyses (i.e., four replicates of each sample in three analytical runs). Apart from Be, Mn, and Zn, the reproducibilities of all the elements listed above ranged between 4.0% and 8.5%. In contrast, for Cd, the concentration obtained was significantly different from the certified value; analyses of this element exhibited low reproducibility. Applying the matrix-matched calibration method, the accuracy for Cd measured was in agreement with both SRM966 and BCR 635; thus, matrix-matched calibration is a practical means of overcoming matrix-enhancement effects for the quantification of Cd. Sample throughput (ca. 5 min per sample) made it possible to rapidly screen a larger number of samples relative to other techniques that require time-consuming sample preparation steps (e.g., removal of a portion of the solid sample or digestion).  相似文献   
949.
The activities of a series of acyclic enediynes, 2‐(6‐substituted hex‐3‐ene‐1,5‐diynyl)benzonitriles ( 1 – 5 ) and their derivatives 7 – 23 were evaluated against several solid tumor cell lines and topoisomerase I. Compounds 1 – 5 show selective cytotoxicity with Hepa cells, and 2‐[6‐phenylhex‐3‐ene‐1,5‐diynyl]benzonitrile ( 5 ) reveals the most‐potent activity. Analogues 8 – 10 and 13 – 22 also have the same effect with DLD cells; 1‐[(Z)‐dec‐3‐ene‐1,5‐diynyl)‐4‐nitrobenzene 21 shows the highest activity among them. Moreover, 1‐[(Z)‐dec‐3‐ene‐1,5‐diynyl]‐2‐(trifluoromethyl)benzene ( 20 ) exhibits the strongest inhibitory activity with the Hela cell line. Derivatives 9, 10, 18 , and 23 display inhibitory activities with topoisomerase I at 87 μM . The cell‐cycle analysis of compound 5 , which induces a significant blockage in S phase, indicates that these novel enediynes probably undergo other biological pathways leading to the cytotoxicity, except the inhibitory activity toward topoisomerase I.  相似文献   
950.
Hsieh WY  Liu S 《Inorganic chemistry》2005,44(6):2031-2038
This report describes the synthesis, characterization, and X-ray crystal structures of two Mn(III) complexes, Mn(DMHP)3 x 12H2O and Mn(DMHP)2Cl x 0.5H2O (DMHP = 1,2-dimethyl-3-hydroxy-4-pyridinone). Mn(DMHP)2Cl was prepared from the reaction of Mn(II) chloride with 2 equiv of DMHP under reflux in the presence of triethylamine. Mn(DMHP)3 was obtained by reacting Mn(II) acetate with 3 equiv of DMHP in the presence of sodium acetate. Mn(DMHP)3 could also be prepared by reacting Mn(OAc)3 x 2H2O with 3 equiv of DMHP in the presence of triethylamine. Both Mn(III) complexes have been characterized by elemental analysis, infrared spectroscopy, electronic paramagnetic resonance, electrospray ionization spectroscopy, electrochemical method, and X-ray crystallography. The X-ray crystal structure of Mn(DMHP)2Cl x 0.5H2O revealed a rare example of five-coordinated Mn(III) complexes with two bidentate ligands and a square pyramidal coordination geometry. Surprisingly, the average Mn-O (hydroxy) bond distance in Mn(DMHP)2Cl x 0.5H2O is approximately 0.025 A longer than that of the average Mn-O (carbonyl) bond, suggesting an extensive delocalization of electrons in the two pyridinone rings. The structure of Mn(DMHP)3 x 12H2O, a rare example of six-coordinate high-spin Mn(III) complexes without Jahn-Teller distortion, is isostructural to M(DMHP)3 x 12H2O (M = Al, Ga, Fe, and In). The electrochemical data for Mn(DMHP)3 suggests that the Mn(III) oxidation state is highly stabilized by three DMHP ligands. DMHP has the potential as a chelator for the removal of excess intracellular Mn and the treatment of chronic Mn toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号