首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   563篇
  免费   23篇
  国内免费   1篇
化学   512篇
晶体学   1篇
力学   7篇
数学   20篇
物理学   47篇
  2023年   2篇
  2022年   3篇
  2021年   6篇
  2020年   7篇
  2019年   2篇
  2018年   5篇
  2017年   6篇
  2016年   10篇
  2015年   14篇
  2014年   18篇
  2013年   22篇
  2012年   28篇
  2011年   60篇
  2010年   15篇
  2009年   16篇
  2008年   41篇
  2007年   48篇
  2006年   73篇
  2005年   49篇
  2004年   48篇
  2003年   33篇
  2002年   31篇
  2001年   9篇
  2000年   7篇
  1999年   11篇
  1998年   7篇
  1997年   3篇
  1996年   4篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有587条查询结果,搜索用时 15 毫秒
61.
Solar panels and bio‐optical sensors play a significant and growing role in a number of applications that are of importance to many organizations. Many of these instruments require a high transmission of radiation into the device for it to work properly. A major issue faced is that harsh marine environments often aid in the growth or development of fouling on the coverglass used to protect the instruments. Over a period of time in an ocean environment, some plant or animal may attach itself to the coverglass, ultimately obscuring the glass and rendering the instrument useless. As such, an antifouling mechanism is needed for these instruments that is inexpensive, long‐lasting, and environment friendly. The approach discussed herein involves the use of known antifouling chemicals which have been incorporated into the polymer matrix. Polymethylmethacrylate (PMMA), bisphenol A polycarbonate (Bis A PC), and a co‐polyterephthalate (CPTE) were examined. The plaques are optically transparent and previous work has shown that, for most samples, the materials display a minimal decrease in mechanical behavior upon the addition of the algaecides. This paper will discuss the effects on the materials' optical properties when exposed to both harsh marine conditions as well as high intensity UV light. Specifically, the decrease in transmission of visible light was examined over a 6 month period of time. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
62.
We have developed a method to smooth the end sections of nanowires and nanograps generated via the On-Wire Lithography process and studied these rods with optical spectroscopies and theoretical modeling (Discrete Dipole Approximation). The first step of the smoothing process is a reductive one aimed at controlling the diffusion and migration of metal ions to the growing nanorod surface by adjusting the applied potential and concentration of the metal ions in the growth solution. A second oxidative smoothing step, based in part on the energetic differences between topologically rough and smooth surfaces, is used to further smooth the nanorod. The RMS roughness can be reduced over five fold to approximately 5 nm. The properties of these smoothed rods were investigated by empirical and theoretical methods, where it was found the smoothed rods have sharper plasmon resonances and decreased SERS intensity.  相似文献   
63.
We demonstrate an all-microwave two-qubit gate on superconducting qubits which are fixed in frequency at optimal bias points. The gate requires no additional subcircuitry and is tunable via the amplitude of microwave irradiation on one qubit at the transition frequency of the other. We use the gate to generate entangled states with a maximal extracted concurrence of 0.88, and quantum process tomography reveals a gate fidelity of 81%.  相似文献   
64.
Treatment of [HNBu3]3[Mo(V)(CN)8] with manganese(II) p-toluenesulfonate in N,N'-dimethylformamide (DMF) affords {[Mn(II)(DMF)4]3[Mo(V)(CN)8]2}n (1) as a two-dimensional network. The structure of 1 consists of [cis-Mn(II)(DMF)4(mu-NC)2]2+ and [trans-Mn(II)(DMF)4(mu-NC)2]2+ units that are linked via cyanides to three-connected [Mo(V)(CN)5(mu-CN)3]3- centers in a 4:2:6 ratio, forming 12-membered rings. Magnetic measurements indicate that 1 is a ferrimagnet (TN = 8 K) that exhibits frequency-dependent behavior in chi". Heating of 1 affords an additional magnetic phase (TN = 21 K) that is absent of linkage isomerism.  相似文献   
65.
66.
Single-molecule force spectroscopy has become a valuable tool for the investigation of intermolecular energy landscapes for a wide range of molecular associations. Atomic force microscopy (AFM) is often used as an experimental technique in these measurements, and the Bell-Evans model is commonly used in the statistical analysis of rupture forces. Most applications of the Bell-Evans model consider a constant loading rate of force applied to the intermolecular bond. The data analysis is often inconsistent because either the probe velocity or the apparent loading rate is being used as an independent parameter. These approaches provide different results when used in AFM-based experiments. Significant variations in results arise from the relative stiffness of the AFM force sensor in comparison with the stiffness of polymeric tethers that link the molecules under study to the solid surfaces. An analytical model presented here accounts for the systematic errors in force-spectroscopy parameters arising from the nonlinear loading induced by polymer tethers. The presented analytical model is based on the Bell-Evans model of the kinetics of forced dissociation and on the asymptotic models of tether stretching. The two most common data reduction procedures are analyzed, and analytical expressions for the systematic errors are provided. The model shows that the barrier width is underestimated and that the dissociation rate is significantly overestimated when force-spectroscopy data are analyzed without taking into account the elasticity of the polymeric tether. Systematic error estimates for asymptotic freely jointed chain and wormlike chain polymer models are given for comparison. The analytical model based on the asymptotic freely jointed chain stretching is employed to analyze and correct the results of the double-tether force-spectroscopy experiments of disjoining "hydrophobic bonds" between individual hexadecane molecules that are covalently tethered via poly(ethylene glycol) linkers of different lengths to the substrates and to the AFM probes. Application of the correction algorithm decreases the spread of the data from the mean value, which is particularly important for measurements of the dissociation rate, and increases the barrier width to 0.43 nm, which might be indicative of the theoretically predicted hydrophobic dewetting.  相似文献   
67.
Organic semiconductors (OSCs) are strong contenders for use in printed, flexible electronics. Although organic electronic materials have been studied for many years, the physics of charge transport is still under investigation. This is in part due to variability resulting from the large variety of molecules that can be synthesized and inconsistency in electrical characterization due to device and processing conditions. Molecular ordering in OSCs is known to alter the charge transport characteristics and attention to long range and short range ordering provides clues as to the nature of transport pathways. Here, we study ordered regioregular poly(3‐hexylthiophene‐2,5‐diyl) films carefully prepared to obtain a set of three samples with incrementally increasing order on identical transistor architectures. Ordering was characterized using a variety of short and long range techniques to probe the coherence and number of crystallites formed during processing, and the correlation between these different measures of order are quantified. We observe three changes in transistor behavior that show a shift from non‐ideal to more textbook‐like characteristics with increasing order: reduction of the contact resistance, shift to field‐independent mobility, and a shift from a diode‐like (S‐shaped) to linear response at low lateral fields. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1063–1074  相似文献   
68.
Multicomponent nanoparticles can be synthesized with either homogeneous or phase‐segregated architectures depending on the synthesis conditions and elements incorporated. To understand the parameters that determine their structural fate, multicomponent metal‐oxide nanoparticles consisting of combinations of Co, Ni, and Cu were synthesized by using scanning probe block copolymer lithography and characterized using correlated electron microscopy. These studies revealed that the miscibility, ratio of the metallic components, and the synthesis temperature determine the crystal structure and architecture of the nanoparticles. A Co‐Ni‐O system forms a rock salt structure largely owing to the miscibility of CoO and NiO, while Cu‐Ni‐O, which has large miscibility gaps, forms either homogeneous oxides, heterojunctions, or alloys depending on the annealing temperature and composition. Moreover, a higher‐ordered structure, Co‐Ni‐Cu‐O, was found to follow the behavior of lower ordered systems.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号