首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   2篇
化学   71篇
力学   1篇
数学   8篇
物理学   9篇
  2023年   1篇
  2022年   2篇
  2021年   3篇
  2020年   8篇
  2019年   7篇
  2018年   2篇
  2017年   4篇
  2016年   6篇
  2015年   1篇
  2014年   2篇
  2013年   16篇
  2012年   5篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  1998年   1篇
  1992年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
81.
The decomposition behavior of cotton fibers is examined using thermogravimetric analysis. The effect of the test parameters on the thermal degradation of raw cotton fibers is determined. Focus is given to the influence of water immersion on the thermal behavior of cotton fibers. For less mature fibers a clear difference is noted between the degradation profiles of the water-immersed and untreated samples. On the contrary, only a small change is noted on the degradation profile for more mature fibers after water immersion. The maturity and variations in water-soluble content of the fiber are found to be important factors influencing the thermal behavior of raw cotton fibers. Inductively coupled plasma atomic emission spectrometry (ICP-AES) is used to underpin the effect of water immersion on cotton fibers. This improved understanding for the role of maturity and water soluble constituents in thermal degradation of cotton fibers may lead to develop routes that improve thermal stability and smoldering characteristics of cotton fibers as relevant for future applications.  相似文献   
82.
Magnetic nanoparticles of cobalt ferrite have been synthesized by wet chemical method using stable ferric and cobalt salts with oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) confirmed the formation of single-phase cobalt ferrite nanoparticles in the range 15–48 nm depending on the annealing temperature and time. The size of the particles increases with annealing temperature and time while the coercivity goes through a maximum, peaking at around 28 nm. A very large coercivity (10.5 kOe) is observed on cooling down to 77 K while typical blocking effects are observed below about 260 K. The high field moment is observed to be small for smaller particles and approaches the bulk value for large particles.  相似文献   
83.
Herein, a novel calix[4]arene compound, which was modified by the 2-(2-aminophenyl)benzothiazole fragment with cyanate recognition function was designed based on the reporter-spacer-receptor sensing system. The construction was done via two-step reaction, and the desired sensor 4 was characterized by FT-IR, 1H-, 13C-NMR, and fluorescence spectroscopy along with HRMS data. The sensor candidate showed distinct fluorometric cyanate detection by means of reporter feature of selected benzothiazole constituent. In the presence of cyanate, the sensor gave a turn-on-type fluorescence at 482 nm with a large stokes' shift. Furthermore, it was observed that our fluoroionophore 4 is highly selective toward cyanate over remaining anions such as sulfate, phosphate, fluoride, chloride, bromide, iodide, chlorate, and nitrate in 10% aqueous solution of DMSO. The 1:2 stoichiometric ratio of the 4 -cyanate complex was given the best fit with Job's plot based on the titration data. The association constant (Ka) of sensor 4 with cyanate is determined to be 1.64 × 105 M−2. The obtained limit of detection (LOD) value for cyanate anion, 312 nM, clearly revealed the remarkable sensitivity of the chemosensor 4 . This supramolecular method provides a highly adaptive technique for the detection of cyanate and so cyanide ions by current international standard methods.  相似文献   
84.
Polystyrene (PS) and polyvinyl chloride (PVC) fibers incorporated into TiO(2) nanoparticles and graphene nanoflakes were fabricated by an electrospinning technique, and then the surface morphology and superhydrophobicity of these electrospun nanocomposite fibers were investigated. Results indicated that the water contact angle of the nanocomposite fiber surfaces increases to 178° on the basis of the fiber diameter, material type, nanoscale inclusion, heat treatment, and surface porosity/roughness. This is a result of the formation of the Cassie-Baxter state in the fibers via the nanoparticle decoration, bead formation, and surface energy of the nanofiber surface. Consequently, these superhydrophobic nanocomposite fibers can be utilized in designing photoelectrodes of dye-sensitized solar cells (DSSCs) as self-cleaning and anti-icing materials for the long-term efficiency of the cells.  相似文献   
85.

The swelling behavior of acrylamide (AAm)–based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. [(Methacrylamido)propyl]trimethyl‐ammonium chloride (MAPTAC) and acrylic acid (AAc) were used as the ionic comonomer in the hydrogel preparation. Three sets of hydrogels containing 70 mol% AAm and 30 mol% ionic comonomers of varying mole ratios were prepared. The variations of the hydrogel volume in response to changes in pH, and salt concentration were measured. As pH increases from 1, the hydrogel volume V eq in water first increases and reaches a maximum value at a certain pH. Then, it decreases again with a further increase in pH and attains a minimum value around the isoelectric point (IEP). After passing the collapsed plateau region, the gel reswells again up to pH=7.1. The reswelling of the collapsed gels containing 10 and 4% MAPTAC occurs as a first‐order phase transition at pH=5.85 and 4.35, respectively, while the hydrogel with 1% MAPTAC reswells continuously beyond its IEP. Depending on pH of the solution, the hydrogels immersed in salt solutions exhibit typical polyelectrolyte or antipolyelectrolye behavior. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. It was shown that the equilibrium swelling theory qualitatively predicts the experimental behavior of polyampholyte hydrogels.  相似文献   
86.
This study focuses on the humidity adsorption kinetics of an isopropanol-induced and pH-triggered bovine pancreatic trypsin gel (BPTG). The BPTG was adsorbed on a gold coated Quartz Crystal Microbalance (QCM) substrate with a thickness of 376 nm. The morphology of the film was characterized using Atomic Force Microscopy (AFM). QCM was used to investigate the humidity sensing properties of the BPTG film. The response of the humidity sensor was explained using the Langmuir model. The average values of adsorption and desorption rates between 11% RH (relative humidity) and 97% RH were calculated as 2482.5 M(-1) s(-1) and 0.02 s(-1), respectively. The equilibrium constant and average Gibbs Free Energy of humidity adsorption and desorption cycles were obtained as 133,000 and -11.8 kJ/mol, respectively.  相似文献   
87.
This study proposes an improved solution algorithm using ant colony optimization (ACO) for finding global optimum for any given test functions. The procedure of the ACO algorithms simulates the decision-making processes of ant colonies as they forage for food and is similar to other artificial intelligent techniques such as Tabu search, Simulated Annealing and Genetic Algorithms. ACO algorithms can be used as a tool for optimizing continuous and discrete mathematical functions. The proposed algorithm is based on each ant searches only around the best solution of the previous iteration with β. The proposed algorithm is called as ACORSES, an abbreviation of ACO Reduced SEarch Space. β is proposed for improving ACO’s solution performance to reach global optimum fairly quickly. The ACORSES is tested on fourteen mathematical test functions taken from literature and encouraging results were obtained. The performance of ACORSES is compared with other optimization methods. The results showed that the ACORSES performs better than other optimization algorithms, available in literature in terms of minimum values of objective functions and number of iterations.  相似文献   
88.
We present magnetic properties of hollow and solid CoFe(2)O(4) nanoparticles that were obtained by annealing of Co(33)Fe(67)/CoFe(2)O(4) (core/shell) nanoparticles. Hollow nanoparticles were polycrystalline whereas the solid nanoparticles were mostly single crystal. Electronic structure studies were performed by photoemission which revealed that particles with hollow morphology have a higher degree of inversion compared to solid nanoparticles and the bulk counterpart. Electronic structure and the magnetic measurements show that particles have uncompensated spins. Quantitative comparison of saturation magnetization (M(S )), assuming bulk Néel type spin structure with cationic distribution, calculated from quantitative XPS analysis, is presented. The thickness of uncompensated spins is calculated to be significantly large for particles with hollow morphology compared to solid nanoparticles. Both morphologies show a lack of saturation up to 7 T. Moreover magnetic irreversibility exists up to 7 T of cooling fields for the entire temperature range (10-300 K). These effects are due to the large bulk anisotropy constant of CoFe(2)O(4) which is the highest among the cubic spinel ferrites. The effect of the uncompensated spins for hollow nanoparticles was investigated by cooling the sample in large fields of up to 9 T. The magnitude of horizontal shift resulting from the unidirectional anisotropy was more than three times larger than that of solid nanoparticles. As an indication signature of uncompensated spin structure, 11% vertical shift for hollow nanoparticles is observed, whereas solid nanoparticles do not show a similar shift. Deconvolution of the hysteresis response recorded at 300 K reveals the presence of a significant paramagnetic component for particles with hollow morphology which further confirms enhanced spin disorder.  相似文献   
89.
1,2,4-Triazole-fluoroquinolone and 1,2,4-triazole–conazole hybrids are designed, synthesized, and investigated in vitro against a variety of common diseases. The structure of the newly synthesized compounds are characterized from spectral data (IR, 1H NMR, 13C NMR, and LC–MS). The antibacterial activity against both Gram-positive and Gram-negative bacteria is shown to be enhanced by many of the produced compounds. Also, some of the products are found to have strong antiproliferative effects aganist HeLa cervical cancer cells, whilst demonstrating cytotoxic effects toward normal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号