首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   190篇
  免费   1篇
化学   115篇
力学   8篇
数学   2篇
物理学   66篇
  2021年   2篇
  2019年   1篇
  2016年   1篇
  2015年   3篇
  2013年   3篇
  2012年   5篇
  2011年   19篇
  2010年   3篇
  2009年   6篇
  2008年   6篇
  2007年   13篇
  2006年   13篇
  2005年   20篇
  2004年   8篇
  2003年   4篇
  2002年   6篇
  2001年   2篇
  2000年   2篇
  1998年   2篇
  1997年   4篇
  1996年   5篇
  1995年   2篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1989年   6篇
  1987年   4篇
  1985年   1篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   6篇
  1976年   4篇
  1975年   8篇
  1974年   3篇
  1973年   1篇
排序方式: 共有191条查询结果,搜索用时 15 毫秒
31.
We investigate a possible mechanism for the autoionization of ultracold Rydberg gases, based on the resonant coupling of Rydberg pair states to the ionization continuum. Unlike an atomic collision where the wave functions begin to overlap, the mechanism considered here involves only the long-range dipole interaction and is in principle possible in a static system. It is related to the process of intermolecular Coulombic decay (ICD). In addition, we include the interaction-induced motion of the atoms and the effect of multi-particle systems in this work. We find that the probability for this ionization mechanism can be increased in many-particle systems featuring attractive or repulsive van der Waals interactions. However, the rates for ionization through resonant dipole coupling are very low. It is thus unlikely that this process contributes to the autoionization of Rydberg gases in the form presented here, but it may still act as a trigger for secondary ionization processes. As our picture involves only binary interactions, it remains to be investigated if collective effects of an ensemble of atoms can significantly influence the ionization probability. Nevertheless our calculations may serve as a starting point for the investigation of more complex systems, such as the coupling of many pair states proposed in [P.J. Tanner et al., Phys. Rev. Lett. 100, 043002 (2008)].  相似文献   
32.
33.
The valence ionization and double ionization spectra of the water molecule, of the water dimer, and the cyclic water clusters (H2O)3 and (H2O)4 are calculated by ab initio Green's function methods and discussed in some detail. Particular attention is paid to the analysis of the development of the spectra with increasing cluster size. Electronic decay following inner valence ionization is addressed and a crude estimate for the kinetic energy spectrum of the secondary electrons is given for the clusters.  相似文献   
34.
To exploit the high intensity of laser radiation, we propose to select frequencies at which single-photon absorption is of too low energy and two or more photons are needed to produce states of an atom that can undergo interatomic Coulombic decay (ICD) with its neighbors. For Ne(2) it is explicitly demonstrated that the proposed multiphoton absorption scheme is much more efficient than schemes used until now, which rely on single-photon absorption. Extensive calculations on Ne(2) show how the low-energy ICD electrons and Ne(+) pairs are produced for different laser intensities and pulse durations. At higher intensities the production of Ne(+) pairs by successive ionization of the two atoms becomes competitive and the respective emitted electrons interfere with the ICD electrons. It is also shown that a measurement after a time delay can be used to determine the contribution of ICD even at high laser intensity.  相似文献   
35.
Computer simulations based on Discrete Element Method have been performed in order to investigate the influence of interparticle interactions on the kinetics of self-assembly and the mechanical strength of nanoparticle aggregates.Three different systems have been considered.In the first system the interaction between particles has been simulated using the JKR (Johnson,Kendall and Roberts) contact theory,while in the second and third systems the interaction between particles has been simulated using van der Waals and electrostatic forces respectively.In order to compare the mechanical behaviour of the three systems,the magnitude of the maximum attractive force between particles has been kept the same in all cases.However,the relationship between force and separation distance differs from case to case and thus,the range of the interparticle force.The results clearly indicate that as the range of the interparticle force increases,the self-assembly process is faster and the work required to produce the mechanical failure of the assemblies increases by more than one order of magnitude.  相似文献   
36.
For neutral molecules in a homogeneous magnetic field there exists a constant of motion, the pseudomomentum, which allows a complete pseudoseparation of the center of mass motion. For molecular ions such constants of motion have not been known, neither exactly nor approximately. In this paper an approximate constant of motion is derived and discussed. Examples are presented.  相似文献   
37.
38.
39.
40.
The performance of the complex absorbing potential (CAP) and the complex scaling (CS) methods in the detection and calculation of complex Siegert energies is studied using a 1‐D long‐range attractive model potential. This potential is constructed to mimic molecular properties, in particular an attractive Coulombic term, to allow one to draw conclusions on molecular ab initio studies. Analyzing the spectrum of the model potential, one compact bound state embedded in the manifold of Rydberg states is found that shows artificial resonance characteristics when applying the CAP and the CS methods. This pseudoresonance problem is less pronounced in the calculation using the CS method than in that using the CAP method. Despite this deficiency, the CAP method is shown to possess advantages over CS when dealing with physical resonances under conditions that simulate the application of standard basis sets in ab initio calculations. The accuracy of the Siegert energy is shown to be maintained when applying a subspace projection technique to the CAP method. This technique reduces the computational demand significantly and leads to an important improvement of the CAP method, which should be of particular significance in molecular applications. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号