首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   256篇
  免费   2篇
  国内免费   1篇
化学   164篇
力学   15篇
数学   37篇
物理学   43篇
  2022年   5篇
  2021年   2篇
  2019年   5篇
  2018年   6篇
  2017年   2篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   20篇
  2012年   10篇
  2011年   18篇
  2010年   10篇
  2009年   8篇
  2008年   8篇
  2007年   17篇
  2006年   18篇
  2005年   11篇
  2004年   9篇
  2003年   3篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   5篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1994年   3篇
  1992年   4篇
  1991年   4篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   6篇
  1982年   1篇
  1981年   5篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1909年   1篇
  1908年   2篇
  1890年   3篇
  1886年   2篇
  1885年   2篇
  1884年   3篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
161.
162.
The spectroscopy of colloidal CdSe nanocrystals is investigated using two-dimensional photon echo (2DPE) spectroscopy with copolarized and cross-polarized pulse sequences. Clearly resolved excited state absorption features are observed to beat at the frequency of the longitudinal-optical phonon, and the phase of this beating is found to be polarization-dependent. A simulation is performed using the excitonic and biexcitionic fine structure states predicted by theory, and the polarization-dependent beating allows each feature to be assigned to a particular excited state absorption pathway. Owing to their circularly polarized selection rules, the polarization-dependent 2DPE technique provides valuable insights into the spectroscopy of quantum dots. In particular, transient absorption features observed in pump-probe studies of CdSe quantum dots can now be assigned to specific fine structure transitions to the ground state biexciton.  相似文献   
163.
164.
165.
The use of semiconductor photocatalysis for treatment of water and air has been the topic of intense research activity over the past 20 years. This powerful process has also been extended to the disinfection of environments contaminated with pathogenic micro-organisms. This review summarizes recent developments concerned with the photocatalytic treatment of water contaminated with pathogenic micro-organisms presenting a potential hazard to animals and human beings.  相似文献   
166.
In previous works, we have described a void space reconstruction method based on non-wetting fluid intrusion, wetting fluid drainage, and image analysis data. The method has been applied to a wide range of substances, including sandstone, compressed and sintered powders, paper substrates and coatings, soil and fibrous mats. We have also demonstrated in a previous work that the spatial correlation of similarly sized voids within inhomogeneous porous media has a huge effect on permeability. We therefore describe a method of measuring such correlation, suitable for use in our void space reconstructions. The method involves a cubic spline smoothing of a variogram of the void sizes in a binary image of the porous medium. It has been successfully tested on an artificially correlated void network, comprising two sintered glass discs of different void size ranges. Stereological effects, caused by the off-centre sectioning of voids, can interfere with the variogram features. Our method is sh own to be insensitive to artificially generated stereological interference. The method is also applied to sandstone samples.  相似文献   
167.
A new imidazole‐containing disubstituted polyacetylene ( P1 ) with strong green fluorescence was successfully prepared through polymer reaction, which was nearly impossible to be obtained from the direct polymerization of its corresponding monomer. The polymer was soluble in common organic solvents, and its strong green fluorescence could be quenched completely by the Cu2+ and Co2+ ions, at the concentrations as low as 1.33 and 1.67 × 10−5 mol/L (0.85 and 0.92 ppm), respectively. Because of the high stability of the complex formed by cyanide and copper ions, the quenched green fluorescence of P1 by copper ions could be turned on upon the addition of trace cyanide (as low as 2.70 × 10−5 mol/L, 0.70 ppm), making P1 a new sensitive cyanide chemosensor. The results thus provided a new opportunity to develop anion chemosensors based on good cation chemosensors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8070–8080, 2008  相似文献   
168.
169.
Porous media with rapid absorption properties are greatly sought after in the fields of super absorbers and catalysts. Natural materials, such as diatomite, or synthetic zeolite feature strongly in industrial reaction processes. Most, or all, of such materials, however, are surface acidic. A novel rapidly absorbing alkaline porous structure, with a high absorption capacity, is presented here. As in the case of diatomite or zeolite, the pigment design incorporates strong capillarity within a highly permeable packed medium. A model is proposed for general use with highly absorbing media that can be proven microscopically to have separate domains of micro- or nano-capillarity embedded within a permeable matrix. The new pigment morphology, based on natural ground calcium carbonate (gcc), exhibits this property using special surface structure modifications. It is contrasted with standard gcc by using consolidated tablet blocks made from a suspension of the pigment and chosen mixtures thereof. The blocks are characterised after drying by mercury porosimetry, and the absorption dynamic of a selected liquid is studied. It is shown that using a self-assembly method of discrete pore structures provides a much faster absorption rate and a liquid capacity for up to 10 times more fluid than a conventional homogeneously distributed pore concept. In such unique discrete network systems, the mercury intrusion curve provides a separable analysis of permeability and capillarity in respect to the inflection point of the cumulative intrusion curve. The discrete decoupled properties each follow the absorption behaviour predicted by previous modelling (Ridgway and Gane, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206(1–3), 2002). The absorption driving force is shown to be determined by the proportion of fine pores present up to a size equal to a Bosanquet inertially-defined optimum within the timescale of absorption. Combining the wetting force, from the capillarity-controlled fine pore structure, with the experimental flow resistance of the sample, consisting of the assembly of particles, it is possible to predict the trends in absorption dynamic using the pore and throat model Pore-Cor.* Use of this model allows existing materials as well as new synthetic designs to be modelled prior to manufacture. The novel alkaline material is compared with independent absorption data for diatomite and shown to be comparable. *Pore-Cor is a software product name of the Environmental and Fluid Modelling Group, University of Plymouth, Devon PL4 8AA, U.K.  相似文献   
170.
We present the backscattering of particulate surfaces consisting of dry biological particles using two laboratory photopolarimeters that measure intensity and degree of linear polarization in a phase-angle range 0.2-60°. We measure scattering properties from three samples composed of dry biological particles, Bacillus subtilis var. niger (BG) spores and samples of fungi Aspergillus terreus and Sporisorium cruentum spores. We find that the surfaces display a prominent brightness opposition effect and significant negative polarization near backscattering angles. The brightness and polarimetric phase curves are different for B. subtilis and the fungi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号