首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   50篇
  免费   1篇
化学   16篇
数学   2篇
物理学   33篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2013年   4篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   7篇
  1993年   1篇
  1992年   5篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有51条查询结果,搜索用时 46 毫秒
31.
Nanoelectromechanical systems (NEMS) are nano-to-micrometer scale mechanical resonators coupled to electronic devices of similar dimensions. NEMS show promise for fast, ultrasensitive force microscopy and for deepening our understanding of how classical dynamics arises by approximation to quantum dynamics. This article begins with a survey of NEMS and then describes certain aspects of their classical dynamics. In particular, we show that for weak coupling the action of the electronic device on the mechanical resonator can be effectively that of a thermal bath, this despite the device being a driven, far-from-equilibrium system.  相似文献   
32.
Using a streak camera we have measured the three Stokes polarization parameters during a polarization switch of a vertical-cavity semiconductor laser. The switch occurs along a corkscrew path on the Poincare sphere and takes on average a few nanoseconds; this value agrees with a theoretical treatment based upon the Fokker-Planck equation.  相似文献   
33.
In this article a monolithic resonant terahertz sensor element with a noise equivalent power superior to that of typical commercial room temperature single pixel terahertz detectors and capable of close to real time read‐out rates is presented. The detector is constructed via the integration of a metamaterial absorber and a micro‐bolometer sensor. An absorption magnitude of 57% at 2.5 THz, a minimum NEP of and a thermal time constant of 68 ms for the sensor are measured. As a demonstration of detector capability, it is employed in a practical Nipkow terahertz imaging system. The monolithic resonant terahertz detector is readily scaled to focal plane array formats by adding standard read‐out and addressing circuitry enabling compact, low‐cost terahertz imaging.  相似文献   
34.
35.
36.
37.
In this work, the optimization of a segregation method of 129I and 14C, two long-living radionuclides, main constituents of nuclear radioactive waste, has been developed. To be able to carry out this project, a fractional factorial experimental design was applied using 5 factors and 2 levels by factor (25–2). Only 8 experiments were necessary to identify the variables affecting the process, and very good recoveries of both radionuclides were obtained: (94?±?2)% for 129I, and (99?±?1)% for 14C. The segregation of 129I was influenced by flow (Q), volume of H2SO4 (VH+), and carriers (CR), while VH+ and time (t) played a major role in the segregation of 14C.  相似文献   
38.
Four new copper(II) complexes of formula [Cu(2)(tppz)(dca)(3)(H(2)O)].dca.3H(2)O (1), [Cu(5)(tppz)(N(3))(10)](n)() (2), [[Cu(2)(tppz)(N(3))(2)][Cu(2)(N(3))(6)]](n)() (3), and [Cu(tppz)(N(3))(2)].0.33H(2)O (4) [tppz = 2,3,5,6-tetrakis(2-pyridyl)pyrazine and dca = dicyanamide anion] have been synthesized and structurally characterized by X-ray diffraction methods. The structure of complex 1 is made up of dinuclear tppz-bridged [Cu(2)(tppz)(dca)(3)(H(2)O)](+) cations, uncoordinated dca anions, and crystallization water molecules. The copper-copper separation across bis-terdentate tppz is 6.5318(11) A. Complex 2 is a sheetlike polymer whose asymmetric unit contains five crystallographically independent copper(II) ions. These units are building blocks in double chains in which the central part consists of a zigzag string of copper atoms bridged by double end-on azido bridges, and the outer parts are formed by dinuclear tppz-bridged entities which are bound to the central part through single end-on azido bridges. The chains are furthermore connected through weak, double out-of-plane end-on azido bridges, yielding a sheet structure. The intrachain copper-copper separations in 2 are 6.5610(6) A across bis-terdentate tppz, 3.7174(5) and 3.8477(5) A across single end-on azido bridges, and from 3.0955(5) to 3.2047(7) A across double end-on azido bridges. The double dca bridge linking the chains into sheets yields a copper-copper separation of 3.5984(7) A. The structure of 3 consists of centrosymmetric [Cu(2)(tppz)(N(3))(2)](2+) and [Cu(2)(N(3))(6)](2)(-) units which are linked through axial Cu.N(azido) (single end-on and double end-to-end coordination modes) type interactions to afford a neutral two-dimensional network. The copper-copper separations within the cation and anion are is 6.5579(5) A (across the bis-terdentate tppz ligand) and 3.1034(6) A (across the double end-on azido bridges), whereas those between the units are 3.6652(4) A (through the single end-on azido group) and 5.3508(4) A (through the double end-to-end azido bridges). The structure of complex 4 is built of neutral [Cu(tppz)(N(3))(2)] mononuclear units and uncoordinated water molecules. The mononuclear units are grouped by pairs to give a rather short copper-copper separation of 3.9031(15) A. The magnetic properties of 1-4 have been investigated in the temperature range 1.9-300 K. The magnetic behavior of complexes 1 and 4 is that of antiferromagnetically coupled copper(II) dimers with J = -43.7 (1) and -2.1 cm(-)(1) (4) (the Hamiltonian being H = -JS(A).S(B)). An overall ferromagnetic behavior is observed for complexes 2 and 3. Despite the structural complexity of 2, its magnetic properties correspond to those of magnetically isolated tppz-bridged dinuclear copper(II) units with an intermediate antiferromagnetic coupling (J = -37.5 cm(-)(1)) plus a ferromagnetic chain of hexanuclear double azido-bridged copper(II) units (the values of the magnetic coupling within and between the hexameric units being +61.1 and +0.0062 cm(-)(1), respectively). Finally, the magnetic properties of 3 were successfully analyzed through a model of a copper(II) chain with regular alternating of three ferromagnetic interactions, J(1) = +69.4 (across the double end-on azido bridges in the equatorial plane), J(2) = +11.2 (through the tppz bridge), and J(3) = +3.4 cm(-)(1) (across the single end-on azido bridge).  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号