首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   35篇
晶体学   2篇
力学   1篇
物理学   3篇
  2021年   1篇
  2013年   1篇
  2009年   1篇
  2008年   3篇
  2007年   4篇
  2006年   2篇
  2005年   1篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1996年   2篇
  1994年   4篇
  1988年   2篇
  1983年   1篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有41条查询结果,搜索用时 43 毫秒
31.
Antibiotics blocking bacterial cell wall assembly (beta-lactams and glycopeptides) are facing a challenge from the progressive spread of resistant pathogens. Lantibiotics are promising candidates to alleviate this problem. Microbisporicin, the most potent antibacterial among known comparable lantibiotics, was discovered during a screening applied to uncommon actinomycetes. It is produced by Microbispora sp. as two similarly active and structurally related polypeptides (A1, 2246-Da and A2, 2230-Da) of 24 amino acids linked by 5 intramolecular thioether bridges. Microbisporicin contains two posttranslational modifications that have never been reported previously in lantibiotics: 5-chloro-trypthopan and mono- (in A2) or bis-hydroxylated (in A1) proline. Consistent with screening criteria, microbisporicin selectively blocks peptidoglycan biosynthesis, causing cytoplasmic UDP-linked precursor accumulation. Considering its spectrum of activity and its efficacy in vivo, microbisporicin represents a promising antibiotic to treat emerging infections.  相似文献   
32.

Abstract  

The reactivity of the labile cluster Os3(CO)10(MeCN)2 (1) with the monofunctionalized heterocyclic ligands 6-R-2,2′-bipyridine (where R = Et, Ph) has been investigated. The alkyl-substituted heterocycle 6-Et-2,2′-bipyridine reacts with 1 in refluxing CH2Cl2 to give an isomeric mixture of HOs3(CO)9(N2C12H11) due to cyclometalation of the side-chain ethyl group (2) and ortho metalation of the unsubstituted bipyridine ring (3). The solid-state structure of the latter cluster, HOs3(CO)9(N2C10H6-6-Et) (3), has unequivocally established the site of the C-H bond activation in the product. Treatment of 1 with the aryl-substituted ligand 6-Ph-2,2′-bipyridine proceeds similarly with ortho metalation at the ancillary phenyl group and the C-6′ ortho site of the unsubstituted bipyridine ring, as verified by 1H NMR spectroscopy. The X-ray diffraction structure of the thermodynamically more stable bipyridine-metalated cluster HOs3(CO)9(N2C10H6-6-Ph) (5) has been determined. The course of these reactions is discussed with respect to our recent study involving the reaction of cluster 1 with the ligand 6-Me-2,2′-bipyridine.  相似文献   
33.
We present time-dependent density functional theory (TDDFT) calculations of the electronic optical rotation (ORP) for seven oxirane and two aziridine derivatives in the gas phase and in solution and compare the results with the available experimental values. For seven of the studied molecules it is the first time that their optical rotation was studied theoretically and we have therefore investigated the influence of several settings in the TDDFT calculations on the results. This includes the choice of the one-electron basis set, the exchange-correlation functional or the particular polarizable continuum model (PCM). We can confirm that polarized quadruple zeta basis sets augmented with diffuse functions are necessary for converged results and find that the aug-pc-3 basis set is a viable alternative to the frequently employed aug-cc-pVQZ basis set. Based on our study, we cannot recommend the generalized gradient functional KT3 for calculations of the ORP in these compounds, whereas the hybrid functional PBE0 gives results quite similar to the long-range correct CAM−B3LYP functional. Finally, we observe large differences in the solvent effects predicted by the integral equation formalism of PCM and the SMD variant of PCM. For the majority of solute/solvent combinations in this study, we find that the SMD model in combination with the PBE0 functional and the aug-pc-3 basis set gives the best agreement with the experimental values.  相似文献   
34.
A series of 2,4- and 2,5-cyclohexadiene-1,3-dicarboxylates were functionalized at the allylic position via oxidation (SeO2, PDC/t-BuOOH) and halogenation (NBS). The regiochemical outcome for different substrates and reactions was studied and the importance of factors such as reaction mechanism, steric hindrance and reaction intermediates stability was discussed.

  相似文献   
35.
A single hydrogen bond between an amide N-H and a thiolate sulfur in model complexes designed to mimic the binding site of zinc thiolate proteins, is shown to reduce the reactivity of the thiolate toward electrophiles by up to 2 orders of magnitude. In addition a single such bond is also sufficient to achieve nearly 100% regiospecificity of reaction between a strong, and hence inherently indiscriminate, alkylating agent like trimethyl oxonium tetrafluoroborate and a single sulfur in a dithiolate construct. The importance of these results in understanding how two systems such as the zinc fingers of the GATA family and the Escherichia coli DNA repair protein Ada which share the same pseudotetrahedral structure and tetrascysteinyl ligation around the zinc can fulfill such widely divergent (structural vs reactive) roles and how specificity of reaction in multithiolate-containing systems can be achieved is discussed.  相似文献   
36.
It is shown in model complexes designed to mimic the binding site of zinc-thiolate proteins that a single hydrogen bond between an amide N-H and a Zn-coordinated thiolate reduces its reactivity toward electrophiles by up to 2 orders of magnitude. In addition, we show that a single N-H...S hydrogen bond is sufficient to achieve near 100% regiospecificity of reaction between a strong, and hence inherently indiscriminate, alkylating agent like trimethyloxonium tetraflouroborate and a single sulfur in a dithiolate construct. The importance of these results in understanding how systems such as the zinc fingers of the GATA family and the E. coli DNA repair protein Ada, which share the same pseudotetrahedral structure and tetracysteinyl ligation around the zinc, can fulfill such widely divergent (structural vs reactive) roles and how specificity of reaction in such multi-thiolate containing systems can be achieved is discussed.  相似文献   
37.
Deconvoluting the different contributions of thiolate and ene-1,2-dithiolate donors to the underlying electronic structure of the Mo site in sulfite oxidase (SO) has proven to be a difficult task. One way in which these differences might be illuminated is by selectively substituting Se for S in model complexes which possess multiple sulfur donor ligand environments. Here we report the synthesis and structures of new oxo-Mo(V) complexes as effective models for the one-electron reduced active site of SO. We have used the tridentate heteroscorpionate ligand (2-dimethylethanethiol)bis(3,5-dimethylpyrazolyl)methane (L3SH) in order to model the constrained cysteinyl sulfur (S(Cys)) ligand environment observed in the crystal structure of the enzyme, and benzene-1,2-dithiol (bdt) as a mimic of the ene-1,2-dithiolate chelate. [(L3S)MoO(bdt)] and [(L3S)MoO(SPh)(2)] have been structurally characterized by X-ray crystallography, and as such, [(L3S)MoO(bdt)] is only the second known model compound that closely approximates the active site structure of reduced forms of SO. Additionally, benzenethiol (SPh) and benzeneselenol (SePh) have been used to perturb the equatorial ligand environment of [(L3S)MoO(bdt)].) This has provided much needed insight into the electronic structure of the one-electron reduced SO site and has allowed for increased understanding of the individual roles played by these different thiolate donors in the oxidative half-reaction of the enzyme. Interestingly, the EPR spectra of [(L3S)MoO(bdt)], [(L3S)MoO(SPh)(2)], and [(L3S)MoO(SePh)(2)] closely resemble that of both high pH (hpH) and low pH (lpH) SO, except for the fact that the magnitude of g(1) is found to be consistently higher in the model spectra compared to that of the enzyme. It is suggested that this derives from an increase in Mo-S covalency in the models relative to hpH and lpH SO.  相似文献   
38.
Crystal structures of DMSO reductases isolated from two different sources and the crystal structure of related trimethylamine-N-oxide reductase indicate that the angle between the terminal oxo atom on the molybdenum and the serinato oxygen varies significantly. To understand the significance of this angular variation, we have synthesized two isomeric compounds of the heteroscorpionato ligand (L1OH) (cis- and trans-(L1O)Mo(V)OCl(2)), where the phenolic oxygen mimics the serinato oxygen donor. Density functional and semiempirical calculations indicate that the trans isomer is more stable than the cis. The lower stability of the cis isomer can be attributed to two factors. First, a strong antibonding interaction between the phenolic oxygen with molybdenum d(xy) orbital raises the energy of this orbital. Second, the strong trans influence of the terminal oxo group in the trans isomer places the phenol ring, and hence the bulky tertiary butyl group, in a less sterically hindered position. In solution, the cis isomer spontaneously converts to the thermodynamically favorable trans isomer. This geometric transformation follows a first-order process, with an enthalpy of activation of 20 kcal/mol and an entropy of activation of -9 cal/mol K. Computational analysis at the semiempirical level supports a twist mechanism as the most favorable pathway for the geometric transformation. The twist mechanism is further supported by detailed mass spectral data collected in the presence of excess tetraalkylammonium salts. Both the cis and trans isomers exhibit well-defined one-electron couples due to the reduction of molybdenum(V) to molybdenum(IV), with the cis isomer being more difficult to reduce. Both isomers also exhibit oxidative couples because of the oxidation of molybdenum(V) to molybdenum(VI), with the cis isomer being easier to oxidize. This electrochemical behavior is consistent with a higher-energy redox orbital in the cis isomer, which has been observed computationally. Collectively, this investigation demonstrates that by changing the O(t)-Mo-O(p) angle, the reduction potential can be modulated. This geometrically controlled modulation may play a gating role in the electron-transfer process during the regeneration steps in the catalytic cycle.  相似文献   
39.
Both dioxo Mo(VI) and mono-oxo Mo(V) complexes of a sterically restrictive N2O heteroscorpionate ligand are found to exist as cis and trans isomers. The thermodynamically stable isomer differs for the two oxidation states, but in each case, we have isolated the kinetically labile isomer and followed its isomerization to the thermodynamically stable form. The Mo(VI) complex is more stable in the cis geometry and isomerizes more than 6 times faster than the Mo(V) complex, which prefers the trans geometry. In OAT reactions with PPh3, the trans isomer of the dioxo-Mo(VI) reacts approximately 20 times faster than the cis isomer. Thus, there are both oxidation state and donor atom dependent differences in isomeric stability and reactivity that could have significant functional implications for molybdoenzymes such as DMSO reductase.  相似文献   
40.
Four new Mo(VI)-dioxo complexes of a family of N2X heteroscorpionate ligands are reported which, together with data already available for (TpR)-, provide a unique example of a comprehensive set of isostructural, isoelectronic complexes differing only in one biologically relevant donor atom. A study of these complexes allows for a direct comparison of structural, spectroscopic, and oxygen atom transfer reactivity properties of the Mo(VI)-dioxo center (of relevance to various families of molybdoenzymes) as a function of donor atom identity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号