首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
化学   12篇
力学   2篇
数学   7篇
物理学   4篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   2篇
  2014年   4篇
  2013年   3篇
  2010年   3篇
  2007年   3篇
  2006年   2篇
  2002年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
For one-dimensional kinetic BGK models, regarded as relaxation models for scalar conservation laws with genuinely nonlinear fluxes, we prove that the macroscopic density converges to the rarefaction wave solution of the corresponding scalar conservation law in the long time limit, and that the phase space density approaches an equilibrium distribution with the rarefaction wave as macroscopic density. The proof requires a smallness assumption on the amplitude of the rarefaction waves and uses a micro-macro decomposition of the perturbation equation.  相似文献   
22.
Fibrinogen is a blood plasma protein that plays a crucial role in hemostasis. It is known that erythrocyte aggregation increases in the presence of fibrinogen, and that β-estradiol decreases erythrocyte aggregation with a constant fibrinogen concentration. In this work, we have used intrinsic tryptophan fluorescence to obtain information on the conformational changes of fibrinogen upon the recently proposed interaction with β-estradiol. To evaluate the effect on the conformational changes during fibrinogen-β-estradiol binding, fluorescence experiments were performed using guanidine hydrochloride (0–6 M) as denaturant, at different pH values. The results obtained for pH 6.5 and 8.0 showed no effect during the binding. The main differences were observed between pH 4.2 and 7.4, in the absence and in the presence of two different denaturant concentrations (1 and 5 M). A red shift of the fluorescence emission from 344 to 354 nm is observed when denaturant concentration is above 3 M for all studied pH values. This phenomenon may be explained by the loss of compact structure of the protein in the presence of denaturant, with tryptophan residues exposure to the aqueous environment and alteration of fibrinogen-β-estradiol binding. These results demonstrate that the binding sites of fibrinogen are strongly dependent on the conformational state of the protein.  相似文献   
23.
Multi-redox catalysis requires the accumulation of more than one charge carrier and is crucial for solar energy conversion into fuels and valuable chemicals. In photo(electro)chemical systems, however, the necessary accumulation of multiple, long-lived charges is challenged by recombination with their counterparts. Herein, we investigate charge accumulation in two model multi-redox molecular catalysts for proton and CO2 reduction attached onto mesoporous TiO2 electrodes. Transient absorption spectroscopy and spectroelectrochemical techniques have been employed to study the kinetics of photoinduced electron transfer from the TiO2 to the molecular catalysts in acetonitrile, with triethanolamine as the hole scavenger. At high light intensities, we detect charge accumulation in the millisecond timescale in the form of multi-reduced species. The redox potentials of the catalysts and the capacity of TiO2 to accumulate electrons play an essential role in the charge accumulation process at the molecular catalyst. Recombination of reduced species with valence band holes in TiO2 is observed to be faster than microseconds, while electron transfer from multi-reduced species to the conduction band or the electrolyte occurs in the millisecond timescale. Finally, under light irradiation, we show how charge accumulation on the catalyst is regulated as a function of the applied bias and the excitation light intensity.

Using transient spectroelectrochemical techniques, we investigate multiply reduced states of molecular catalysts on titania photoelectrodes as a function of the applied bias and the light intensity.  相似文献   
24.
We demonstrate a tunable nanosecond optical parametric oscillator with a narrowed signal spectrum. This was done by use of a volume Bragg grating based retroreflector, which makes the tuning simple and yields a compact design. Using periodically poled KTiOPO4 as the nonlinear medium, we generated 0.42 mJ of signal energy at 760 nm with a tuning range of 5 nm(2.6 THz) and a bandwidth of 0.25 nm(130 GHz) when the oscillator was pumped at 532 nm with 1.3 mJ of energy.  相似文献   
25.
Self-starting and stable mode-locking of an Yb:KYW laser in the picoseconds pulse regime has been achieved by exploiting a positive cascaded Kerr lens in periodically poled KTP. The use of a volume Bragg grating (VBG), for locking the output spectrum of the laser, was essential to achieve a stable mode-locked operation in this wide gain bandwidth laser material. The laser emitted stable, nearly transform-limited pulses with a duration of 16 ps, at a repetition rate of 210 MHz, and with an energy of 3.2 nJ. The mode-locked spectrum was centred at 1,029.1 nm and featured a FWHM bandwidth of 85 pm, which was effectively determined by the VBG. Combination of a large cascaded Kerr nonlinearity with spectral limiting by a VBG represents so far the best opportunity for stable mode-locking of a broadband laser to produce near-transform-limited picosecond pulses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号