首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   18篇
化学   246篇
晶体学   1篇
力学   4篇
数学   7篇
物理学   17篇
  2023年   1篇
  2022年   4篇
  2021年   3篇
  2020年   1篇
  2019年   9篇
  2018年   7篇
  2017年   4篇
  2016年   9篇
  2015年   10篇
  2014年   11篇
  2013年   11篇
  2012年   24篇
  2011年   28篇
  2010年   12篇
  2009年   12篇
  2008年   11篇
  2007年   30篇
  2006年   28篇
  2005年   13篇
  2004年   11篇
  2003年   16篇
  2002年   7篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   2篇
排序方式: 共有275条查询结果,搜索用时 93 毫秒
21.
Liquid chromatography coupled with mass spectrometry for the determination of total and unbound mycophenolic acid and its major metabolite in human plasma has been developed. Sample preparations were based on a fully automated solid-phase extraction process and ultrafiltration. Mass spectrometric data were acquired in a single-ion monitoring method. The analytes and nevirapine (internal standard) were well separated in an isocratic mode over 8 min. Validation study exhibited excellent linearity, with intra- and inter-day precision and accuracy of less than 12%. The assay was successfully applied to the pharmacokinetic study of mycophenolic acid in patients with autoimmune diseases.  相似文献   
22.
23.
The iminodiacetic acid and aminodiethanol moieties are known for their ability to generate with boronic acids bicyclic structures having a strong intramolecular NB coordination. We describe here the convergent synthesis of 3′-deoxy-3′-iminodiacetic acid and 3′-deoxy-3′-aminodiethanol thymidine analogues. The abilities of these compounds to form boronate complexes with aliphatic or aromatic boronic acids were established by 1D and 2D 1H and 13C NMR. Moreover, conformational analysis of the newly synthesized compounds revealed a marked preference for an N-type sugar puckering.  相似文献   
24.
A high-throughput methodology combined with X-ray powder diffraction measurements was used to investigate the reactivity of the TetraThiaFulvalene TetraCarboxylic acid ((TTF-TC)H(4)) with divalent metals (M = Ni, Co) under various reaction conditions (stoichiometry, pH, temperature). Two new crystalline phases were identified and then studied by single crystal X-ray diffraction. Whereas the first one appears to be a simple salt, the second one, formulated {[M(H(2)O)(4)](2)(TTF-TC)}·4H(2)O, is built of 2:1 M:TTF-TC molecular complexes and labeled MIL-136(Ni, Co) (MIL stands for Materials Institute Lavoisier). The combination of thermogravimetric analysis and thermodiffraction studies reveals that MIL-136(Ni) exhibits a complex dehydration behavior. Indeed, a partial dehydration/rehydration process led to the single-crystal-to-single-crystal transformation of the molecular compound in a two-dimensional coordination polymer formulated {[Ni(2)(H(2)O)(5)(TTF-TC)]}·H(2)O (MIL-136'(Ni)). Magnetic and redox properties of MIL-136(Ni, Co) were investigated. Magnetic measurements indicate that all the magnetic coupling, intra- and intermolecular, are very weak; thus, the magnetic data of MIL-136(Ni, Co) have been interpreted in term of single-ion spin orbit coupling. Solid state cyclic voltammetry of MIL-136(Ni, Co) presents three reversible waves which were assigned to the redox activity of the TTF core and the metallic cations. In contrast to solids based on TTF linkers and alkaline ions, the MIL-136(Ni, Co) complexes do not act as excellent positive electrode materials for Li batteries, but present two reversible electron oxidation of the TTF core. These observations were tentatively related to the strength of the metal-carboxylate bond.  相似文献   
25.
The structure of the sodiated peptide GGGGGGGG-Na+ or G8-Na+ was investigated by infrared multiple photon dissociation (IRMPD) spectroscopy and a combination of theoretical methods. IRMPD was carried out in both the fingerprint and N—H/O—H stretching regions. Modeling used the polarizable force field AMOEBA in conjunction with the replica-exchange molecular dynamics (REMD) method, allowing an efficient exploration of the potential energy surface. Geometries and energetics were further refined at B3LYP-D and MP2 quantum chemical levels. The IRMPD spectra indicate that there is no free C-terminus OH and that several N—Hs are free of hydrogen bonding, while several others are bound, however not very strongly. The structure must then be either of the charge solvation (CS) type with a hydrogen-bound acidic OH, or a salt bridge (SB). Extensive REMD searches generated several low-energy structures of both types. The most stable structures of each type are computed to be very close in energy. The computed energy barrier separating these structures is small enough that G8-Na+ is likely fluxional with easy proton transfer between the two peptide termini. There is, however, good agreement between experiment and computations in the entire spectral range for the CS isomer only, which thus appears to be the most likely structure of G8-Na+ at room temperature.  相似文献   
26.
Nanoscale materials are used in the biomedical field for magnetic resonance imaging, protein detection and drug/gene delivery. Gold nanoparticles (AuNPs) are particularly investigated in cancer treatment and imaging. In this study, we described a simple and reliable liquid method to coat AuNPs (diameter: 21 nm) layer-by-layer with alternative cationic polyallylamine and anionic polystyrenesulfonate. The C-terminal amino acid of the antibody directed against anti-bovine serum albumin was activated by EDC/NHS, and then condensed with the amino functions of the external polyallylamine layer. An ELISA test confirmed that the antigen recognition of the bioconjugate antibody was conserved. This AuNP coating and the covalently coupling could be used as a generic process for binding other specific antibodies, particularly those overexpressed in cancer cells and angiogenesis.  相似文献   
27.
28.
29.
Biomarkers are an increasingly important constituent of the drug development process, offering the potential of increased efficiency through reduced compound attrition and earlier proof of mechanism and/or efficacy. Assays developed for compound screening that can be directly translated for clinical trials are especially valuable, but their successful adoption requires a careful balance between assay performance and implementation costs. One such ‘fit‐for‐purpose’ biomarker assay, the indirect measurement of pharmacological modulation of sphingolipid biosynthesis and disposition, is presented here. Among spingolipids, numerous ceramide species are readily detectable in different lipoprotein fractions of mammalian plasma, but their parallel quantification can be prohibitively expensive and time consuming. Ceramides differ in their fatty acid moiety, which is readily removed by hydrolysis, yielding a common sphingosine derivative, the measurement of which serves as an indicator of total ceramide. When followed by liquid chromatography tandem mass spectrometry (LC/MS/MS) for detection, robust analyte quantification becomes relatively straightforward. The practical utility of a method developed to be fit for the purpose of rapidly and quantitatively measuring treatment‐induced variations in total ceramide from hamster plasma and individual lipoprotein fractions is described. With a linear calibration range from 0.003 to 33.4 μm sphingosine, precision and accuracy error in plasma‐based quality controls spiked with ceramides was less than 15%. The specificity of the assay for ceramides was also assessed. The simplicity of the method would allow for its potential translation to other preclinical species, as well as for clinical applications in later‐stage drug development. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
30.
The association of Mg2+ and H2PO4? in water can give insights into Mg:phosphate interactions in general, which are very widespread, but for which experimental data is surprisingly sparse. It is studied through molecular dynamics simulations (>100 ns) by using the polarizable AMOEBA force field, and the association free energy is computed for the first time. Explicit consideration of outer‐sphere and two types of inner‐sphere association provides considerable insight into the dynamics and thermodynamics of ion pairing. After careful assessment of the computational approximations, the agreement with experimental values indicates that the methodology can be extended to other inorganic and biological Mg:phosphate interactions in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号