全文获取类型
收费全文 | 205篇 |
免费 | 15篇 |
专业分类
化学 | 191篇 |
力学 | 4篇 |
数学 | 10篇 |
物理学 | 15篇 |
出版年
2024年 | 2篇 |
2023年 | 4篇 |
2022年 | 6篇 |
2021年 | 10篇 |
2020年 | 14篇 |
2019年 | 7篇 |
2018年 | 4篇 |
2017年 | 6篇 |
2016年 | 7篇 |
2015年 | 18篇 |
2014年 | 6篇 |
2013年 | 15篇 |
2012年 | 18篇 |
2011年 | 9篇 |
2010年 | 8篇 |
2009年 | 11篇 |
2008年 | 16篇 |
2007年 | 9篇 |
2006年 | 13篇 |
2005年 | 9篇 |
2004年 | 6篇 |
2003年 | 4篇 |
2002年 | 8篇 |
2001年 | 1篇 |
1998年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1993年 | 2篇 |
1992年 | 1篇 |
1988年 | 1篇 |
1984年 | 1篇 |
1978年 | 1篇 |
排序方式: 共有220条查询结果,搜索用时 0 毫秒
211.
VNb9O25−δ—Synthesis, electrical conducting behaviour and density functional theory (DFT) calculation
Carina Bergner Vladimir Vashook Stefano Leoni Hubert Langbein 《Journal of solid state chemistry》2009,182(8):2053-2060
In order to investigate the influence of the oxygen partial pressure (p(O2)) on the electrical conductivity, VNb9O25 was prepared by thermal decomposition of freeze-dried oxalate precursors and by a solid state reaction of V2O5/Nb2O5 mixtures. The samples were characterised by X-ray diffraction, grain size analysis and scanning electron microscopy (SEM). The electrical conductivity of the n-type semiconductor VNb9O25−δ can be interpreted as an activated hopping process with a preferred localisation of charge carriers at V(IV) centres. The electronic structure of VNb9O25−δ was calculated within the framework of the local density approximation (LDA) to DFT. Partial reduction of V(V) centres causes localised vanadium states to appear inside the band gap. The calculated activation energy values are in good agreement with the experimental ones. 相似文献
212.
Uhler SA Cai D Man Y Figge C Walter NG 《Journal of the American Chemical Society》2003,125(47):14230-14231
Short noncoding RNAs are increasingly recognized as key regulators of essential cellular processes such as RNA interference. A better understanding of the processes by which such RNAs are degraded is necessary to expand our knowledge of these processes and our ability to harness them. To this end we have developed a novel fluorescence resonance energy transfer (FRET) assay to monitor in real-time the degradation kinetics of short RNAs by a purified RNase and S100 cytosolic HeLa cell extract. An unstructured RNA is found to be degraded more rapidly than a stem-loop RNA under all conditions tested except for low concentrations of cell extract, showing that secondary structure confers protection against RNase activity. The assay also allows for the quantitative comparison of inhibitors such as Contrad70 and aurin tricarboxylic acid (ATA). Finally, gel electrophoretic FRET analysis confirms that HeLa cell extract is dominated by 5' to 3' exonucleolytic activity. 相似文献
213.
Carina M. Sonnleitner Saerom Park Robert Eckl Thomas Ertl Oliver Reiser 《Angewandte Chemie (International ed. in English)》2020,59(41):18110-18115
The synthesis of tropanes via a microwave‐assisted, stereoselective 6π‐electrocyclic ring‐opening/ Huisgen [3+2]‐cycloaddition cascade of cyclopropanated pyrrole and furan derivatives with electron‐deficient dipolarophiles is demonstrated. Starting from furans or pyrroles, 8‐aza‐ and 8‐oxabicyclo[3.2.1]octanes are accessible in two steps in dia‐ and enantioselective pure form, being versatile building blocks for the synthesis of pharmaceutically relevant targets, especially for new cocaine analogues bearing various substituents at the C‐6/C‐7 positions of the tropane ring system. Moreover, the 2‐azabicyclo[2.2.2]octane core (isoquinuclidines), being prominently represented in many natural and pharmaceutical products, is accessible via this approach. 相似文献
214.
Cobalt ions in aqueous thiocyanate solution react with Aliquat-336-xylene solution to form anion-association complex which is easily extracted into the organic phase. A typical extraction procedure involves extracting a solution which is 10 ppm in cobalt and 0.06 M,
Strippant | Cobalt stripped (%) |
Na2S (M) 1.0 | 18.3 |
2.0 | 10.7 |
Na2SO3 (M) 0.1 | 10.7 |
0.5 | 49.6 |
1.0 | 52.9 |
EDA (%) 2.5 | 76.6 |
NaOH (M) 0.1 | 4.1 |
0.5 | 74.1 |
1.0 | 90.8 |
2.0 | 76.8 |
NH4OH (M) 0.1 | 24.1 |
0.5 | 91.8 |
1.0 | 97.5 |
2.0 | 99.9 |
EDTA (M) 0.02 | >99.9 |
0.05 | >99.9 |
0.1 | >99.9 |
EDTA (%) 0.1 | >99.9 |
0.5 | >99.9 |
1.0 | >99.9 |