首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   17篇
化学   189篇
力学   4篇
数学   10篇
物理学   15篇
  2023年   4篇
  2022年   6篇
  2021年   10篇
  2020年   14篇
  2019年   7篇
  2018年   4篇
  2017年   6篇
  2016年   7篇
  2015年   18篇
  2014年   6篇
  2013年   15篇
  2012年   18篇
  2011年   9篇
  2010年   8篇
  2009年   11篇
  2008年   16篇
  2007年   9篇
  2006年   13篇
  2005年   9篇
  2004年   6篇
  2003年   4篇
  2002年   8篇
  2001年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1988年   1篇
  1984年   1篇
  1978年   1篇
排序方式: 共有218条查询结果,搜索用时 156 毫秒
211.
Short noncoding RNAs are increasingly recognized as key regulators of essential cellular processes such as RNA interference. A better understanding of the processes by which such RNAs are degraded is necessary to expand our knowledge of these processes and our ability to harness them. To this end we have developed a novel fluorescence resonance energy transfer (FRET) assay to monitor in real-time the degradation kinetics of short RNAs by a purified RNase and S100 cytosolic HeLa cell extract. An unstructured RNA is found to be degraded more rapidly than a stem-loop RNA under all conditions tested except for low concentrations of cell extract, showing that secondary structure confers protection against RNase activity. The assay also allows for the quantitative comparison of inhibitors such as Contrad70 and aurin tricarboxylic acid (ATA). Finally, gel electrophoretic FRET analysis confirms that HeLa cell extract is dominated by 5' to 3' exonucleolytic activity.  相似文献   
212.
Enantiodivergent, catalytic reduction of activated alkenes relays stereochemical information encoded in the antipodal chiral catalysts to the pro‐chiral substrate. Although powerful, the strategy remains vulnerable to costs and availability of sourcing both catalyst enantiomers. Herein, a stereodivergent hydrogenation of α,β‐unsaturated phosphonates is disclosed using a single enantiomer of the catalyst. This enables generation of the R‐ or S‐configured β‐chiral phosphonate with equal and opposite selectivity. Enantiodivergence is regulated at the substrate level through the development of a facile EZ isomerisation. This has been enabled for the first time by selective energy transfer catalysis using anthracene as an inexpensive organic photosensitiser. Synthetically valuable in its own right, this process enables subsequent RhI‐mediated stereospecific hydrogenation to generate both enantiomers of the product using only the S‐catalyst (up to 99:1 and 3:97 e.r.). This strategy out‐competes the selectivities observed with the E‐substrate and the R‐catalyst.  相似文献   
213.
The synthesis of tropanes via a microwave‐assisted, stereoselective 6π‐electrocyclic ring‐opening/ Huisgen [3+2]‐cycloaddition cascade of cyclopropanated pyrrole and furan derivatives with electron‐deficient dipolarophiles is demonstrated. Starting from furans or pyrroles, 8‐aza‐ and 8‐oxabicyclo[3.2.1]octanes are accessible in two steps in dia‐ and enantioselective pure form, being versatile building blocks for the synthesis of pharmaceutically relevant targets, especially for new cocaine analogues bearing various substituents at the C‐6/C‐7 positions of the tropane ring system. Moreover, the 2‐azabicyclo[2.2.2]octane core (isoquinuclidines), being prominently represented in many natural and pharmaceutical products, is accessible via this approach.  相似文献   
214.
Cation-binding salen nickel catalysts were developed for the enantioselective alkynylation of trifluoromethyl ketones in high yield (up to 99 %) and high enantioselectivity (up to 97 % ee). The reaction proceeds with substoichiometric quantities of base (10–20 mol % KOt-Bu) and open to air. In the case of trifluoromethyl vinyl ketones, excellent chemo-selectivity was observed, generating 1,2-addition products exclusively over 1,4-addition products. UV-vis analysis revealed the pendant oligo-ether group of the catalyst strongly binds to the potassium cation (K+) with 1:1 binding stoichiometry (Ka=6.6×105 m −1).  相似文献   
215.
The adsorption kinetics of phosphate and arsenate on goethite is studied and compared. Batch adsorption experiments were performed at different adsorbate concentrations, pH, temperatures and stirring rates. For both oxoanions the adsorption rate increases by increasing adsorbate concentration, decreasing pH and increasing temperature. It does not change by changing stirring rate. The adsorption takes place in two processes: a fast one that takes place in less than 5 min and a slow one that takes place in several hours or more. The rate of the slow process does not depend directly on the concentration of phosphate or arsenate in solution, but depends linearly on the amount of phosphate or arsenate that was adsorbed during the fast process. Apparent activation energies and absence of stirring rate effects suggest that the slow process is controlled by diffusion into pores, although the evidence is not conclusive. The similarities in the adsorption kinetics of phosphate and arsenate are quantitatively shown by using a three-parameters equation that takes into account both the fast and the slow processes. These similarities are in line with the similar reactivity that phosphate and arsenate have in general and may be important for theoretical and experimental studies of the fate of these oxoanions in the environment.  相似文献   
216.
The classical route to the PMe3-stabilised polycyclic aromatic hydrocarbon (PAH)-substituted diborenes B2Ar2(PMe3)2 (Ar = 9-phenanthryl 7-Phen; Ar = 1-pyrenyl 7-Pyr) via the corresponding 1,2-diaryl-1,2-dimethoxydiborane(4) precursors, B2Ar2(OMe)2, is marred by the systematic decomposition of the latter to BAr(OMe)2 during reaction workup. Calculations suggest this results from the absence of a second ortho-substituent on the boron-bound aryl rings, which enables their free rotation and exposes the B–B bond to nucleophilic attack. 7-Phen and 7-Pyr are obtained by the reduction of the corresponding 1,2-diaryl-1,2-dichlorodiborane precursors, B2Ar2Cl2(PMe3)2, obtained from the SMe2 adducts, which are synthesised by direct NMe2–Cl exchange at B2Ar2(NMe2)2 with (Me2S)BCl3. The low-lying π* molecular orbitals (MOs) located on the PAH substituents of 7-Phen and 7-Pyr intercalate between the B–B-based π and π* MOs, leading to a relatively small HOMO–LUMO gap of 3.20 and 2.72 eV, respectively. Under vacuum or at high temperature 7-Phen and 7-Pyr undergo intramolecular hydroarylation of the B Created by potrace 1.16, written by Peter Selinger 2001-2019 B bond to yield 1,2-dihydronaphtho[1,8-cd][1,2]diborole derivatives. Hydrogenation of 7-Phen, 7-Pyr and their 9-anthryl and mesityl analogues III and II, respectively, results in all cases in splitting of the B–B bond and isolation of the monoboranes (Me3P)BArH2. NMR-spectroscopic monitoring of the reactions, solid-state structures of isolated reaction intermediates and computational mechanistic analyses show that the hydrogenation of the three PAH-substituted diborenes proceeds via a different pathway to that of the dimesityldiborene. Rather than occurring exclusively at the B–B bond, hydrogenation of 7-Ar and III proceeds via a hydroarylated intermediate, which undergoes one B–B bond-centered H2 addition, followed by hydrogenation of the endocyclic B–C bond resulting from hydroarylation, making the latter effectively reversible.

In contrast to classical B–B bond-centred diborene hydrogenation, polycyclic aromatic hydrocarbon-substituted diborenes first undergo thermal intramolecular hydroarylation, followed by hydrogenation of the remaining B–B and endocyclic B–C bonds.  相似文献   
217.
218.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号