首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   917689篇
  免费   8858篇
  国内免费   2646篇
化学   475634篇
晶体学   13129篇
力学   44792篇
综合类   33篇
数学   124647篇
物理学   270958篇
  2021年   7648篇
  2020年   8445篇
  2019年   9389篇
  2018年   12208篇
  2017年   12157篇
  2016年   18042篇
  2015年   10771篇
  2014年   17018篇
  2013年   40964篇
  2012年   31214篇
  2011年   37576篇
  2010年   27222篇
  2009年   26839篇
  2008年   35206篇
  2007年   35046篇
  2006年   32509篇
  2005年   29070篇
  2004年   26872篇
  2003年   24069篇
  2002年   23840篇
  2001年   25403篇
  2000年   19865篇
  1999年   15593篇
  1998年   13253篇
  1997年   13034篇
  1996年   12530篇
  1995年   11347篇
  1994年   11318篇
  1993年   10879篇
  1992年   11837篇
  1991年   12112篇
  1990年   11697篇
  1989年   11263篇
  1988年   11247篇
  1987年   11111篇
  1986年   10552篇
  1985年   13751篇
  1984年   14282篇
  1983年   11837篇
  1982年   12230篇
  1981年   11843篇
  1980年   11303篇
  1979年   11891篇
  1978年   12410篇
  1977年   12253篇
  1976年   12215篇
  1975年   11462篇
  1974年   11457篇
  1973年   11668篇
  1972年   8400篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
891.
892.
The coalescence of branches in the Y junctions of single-wall carbon nanotubes (10 nm long) is predicted to occur when the branches approach each other under the action of a load (~10 nN) applied to their ends. A transition to the new state with parallel branches bound by molecular interactions was simulated and the energy characteristics were calculated by the molecular dynamics method. The Y junctions with parallel branches are stable at temperatures up to 2000 K. It is established that there is a threshold distance between the branch ends, below which the branches exhibit spontaneous sticking under the action of molecular attraction forces. If the branches are unloaded before this threshold distance is reached, they oscillate (acting as a nanodimensional “tuning fork”) at a frequency of ~100 GHz.  相似文献   
893.
894.
895.
896.
897.
The kinetics of domain size equilibration were studied for asymmetric poly(ethylene‐alt‐propylene)‐b‐poly(dimethyl siloxane) (EPDMS) and polyisoprene‐b‐poly(dimethyl siloxane) (IDMS) block copolymers in the body‐centered cubic ordered phase. Small‐angle X‐ray scattering measurements of the principal peak position (q*) were made as a function of time after temperature jumps within the ordered state. The equilibration times were remarkably long, especially on cooling and for temperatures below 100 °C. For example, after a quench to 40 °C, q* for EPDMS had not fully equilibrated even after several weeks of annealing; IDMS required several days to equilibrate at the same temperature. In contrast, a lamella‐forming EPDMS sample was able to adjust q* within the timescale of the measurements (i.e., minutes) with both heating and cooling over the same temperature range. Measurements of tracer diffusion indicated that chain mobility was not the rate‐limiting step, although differences in mobility did account for the differences between EPDMS and IDMS. Rather, the limiting step was the required reduction in the number density of spheres on cooling; the disappearance of spheres, either by evaporation or by fusion, provided a large kinetic barrier. Lamellae, however, could adjust domain dimensions simply by local displacements of individual chains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 715–724, 2003  相似文献   
898.
A solution methodology has been developed for incompressible flow in general curvilinear co‐ordinates. Two staggered grids are used to discretize the physical domain. The first grid is a MAC quadrilateral mesh with pressure arranged at the centre and the Cartesian velocity components located at the middle of the sides of the mesh. The second grid is so displaced that its corners correspond to the centre of the first grid. In the second grid the pressure is placed at the corner of the first grid. The discretized mass and momentum conservation equations are derived on a control volume. The two pressure grid functions are coupled explicitly through the boundary conditions and implicitly through the velocity of the field. The introduction of these two grid functions avoids an averaging of pressure and velocity components when calculating terms that are generated in general curvilinear co‐ordinates. The SIMPLE calculation procedure is extended to the present curvilinear co‐ordinates with double grids. Application of the methodology is illustrated by calculation of well‐known external and internal problems: viscous flow over a circular cylinder, with Reynolds numbers ranging from 10 to 40, and lid‐driven flow in a cavity with inclined walls are examined. The numerical results are in close agreement with experimental results and other numerical data. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
899.
Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide as an initiator in dioxane at 65°C±0·l°C. The system follows non-ideal radical kinetics (R p ∝ [M]1·4 [I]0·44 @#@) due to primary radical termination as well as degradative chain-transfer reaction. The overall activation energy and average value ofk 2 p /k t were 64 kJmol−1 and 0.173 × 10−3 1 mol−1 s−1 respectively  相似文献   
900.
The kinetics of C6H5 reactions with n‐CnH2n+2 (n = 3, 4, 6, 8) have been studied by the pulsed laser photolysis/mass spectrometric method using C6H5COCH3 as the phenyl precursor at temperatures between 494 and 1051 K. The rate constants were determined by kinetic modeling of the absolute yields of C6H6 at each temperature. Another major product C6H5CH3 formed by the recombination of C6H5 and CH3 could also be quantitatively modeled using the known rate constant for the reaction. A weighted least‐squares analysis of the four sets of data gave k (C3H8) = (1.96 ± 0.15) × 1011 exp[?(1938 ± 56)/T], and k (n‐C4H10) = (2.65 ± 0.23) × 1011 exp[?(1950 ± 55)/T] k (n‐C6H14) = (4.56 ± 0.21) × 1011 exp[?(1735 ± 55)/T], and k (n?C8H18) = (4.31 ± 0.39) × 1011 exp[?(1415 ± 65)T] cm3 mol?1 s?1 for the temperature range studied. For the butane and hexane reactions, we have also applied the CRDS technique to extend our temperature range down to 297 K; the results obtained by the decay of C6H5 with CRDS agree fully with those determined by absolute product yield measurements with PLP/MS. Weighted least‐squares analyses of these two sets of data gave rise to k (n?C4H10) = (2.70 ± 0.15) × 1011 exp[?(1880 ± 127)/T] and k (n?C6H14) = (4.81 ± 0.30) × 1011 exp[?(1780 ± 133)/T] cm3 mol?1 s?1 for the temperature range 297‐‐1046 K. From the absolute rate constants for the two larger molecular reactions (C6H5 + n‐C6H14 and n‐C8H18), we derived the rate constant for H‐abstraction from a secondary C? H bond, ks?CH = (4.19 ± 0.24) × 1010 exp[?(1770 ± 48)/T] cm3 mol?1 s?1. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 49–56, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号