首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1463篇
  免费   203篇
  国内免费   142篇
化学   1106篇
晶体学   20篇
力学   38篇
综合类   3篇
数学   95篇
物理学   546篇
  2024年   11篇
  2023年   47篇
  2022年   54篇
  2021年   67篇
  2020年   98篇
  2019年   76篇
  2018年   54篇
  2017年   54篇
  2016年   73篇
  2015年   85篇
  2014年   87篇
  2013年   102篇
  2012年   124篇
  2011年   126篇
  2010年   91篇
  2009年   71篇
  2008年   88篇
  2007年   70篇
  2006年   64篇
  2005年   55篇
  2004年   37篇
  2003年   34篇
  2002年   25篇
  2001年   21篇
  2000年   11篇
  1999年   27篇
  1998年   20篇
  1997年   26篇
  1996年   20篇
  1995年   11篇
  1994年   14篇
  1993年   13篇
  1992年   11篇
  1991年   6篇
  1990年   8篇
  1989年   7篇
  1988年   1篇
  1987年   4篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1969年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有1808条查询结果,搜索用时 15 毫秒
101.
The structural fragment ions of nine cephalosporins were studied by electrospray ionization quadrapole trap mass spectrometry (Q‐Trap MSn) in positive mode. The influence of substituent groups in the 3‐position on fragmentation pathway B, an α‐cleavage between the C7? C8 single bond, coupled with a [2,4]‐trans‐Diels‐Alder cleavage simultaneously within the six‐membered heterocyclic ring, was also investigated. It was found that when the substituent groups were methyl, chloride, vinyl, or propenyl, fragmentations belonging to pathway B were detected; however, when the substituents were heteroatoms such as O, N, or S, pathway B fragmentation was not detected. This suggested that the [M–R3]+ ion, which was produced by the bond cleavage within the substituent group at the 3‐position, had a key influence on fragmentation pathway B. This could be attributed to the strong electronegativity of the heteroatoms (O, N, S) that favors the production of the [M–R3]+ ion. Moreover, having the positive charge of the [M–R3]+ ion localized on the nitrogen atom in the 1‐position changed the electron density distribution of the heterocyclic structure, which prohibits a [2,4]‐reverse‐Diels‐Alder fragmentation and as a result fragmentation pathway B could not occur. The influence of the substituent group in the 3‐position was determined by the intensity ratio (e/d) of ions produced by fragmentation pathway A, a [2,2]‐trans‐Diels‐Alder cleavage within the quaternary lactam ring, including the breaking of the amide bond and the C6? C7 single bond (ion d), and fragmentation pathway B (ion e). The results indicate that the electronegativity of the substituent group was a key influencing factor of pathway B fragmentation intensity, because the intensity ratio (e/d) is higher for a chlorine atom, a vinyl, or a propenyl group than that of a methyl group. This study provided some theoretical basis for the identification of cephalosporin antibiotics and structural analysis of related substances in drugs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
102.
Multireference configuration interaction with single and double excitations (MRCISD) as well as its analytic CI gradients has been implemented in the semiempirical framework. The hole‐particle symmetry and a mixed driven model for computing coupling coefficients have been used in the new code that allows us to perform MRCI and gradient calculations with higher efficiency and less storage requirements. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   
103.
The 1-oxo-1, 2, 3, 4-tetrahydroisoquinoline and 1-Oxo-1, 2-dihydroisoquinoline scaffolds were utilized in the design and solution phase synthesis of focused libraries of compounds for screening against West Nile Virus (WNV) protease. Exploratory studies have led to the identification of a WNV protease inhibitor (a 1-oxo-1, 2-dihydroisoquinoline-based derivative, 12j) which could potentially serve as a launching pad for a hit-to-lead optimization campaign. The identified hit was devoid of any inhibitory activity toward a panel of mammalian serine proteases.  相似文献   
104.
Boronate affinity solid phase microextraction (BA-SPME) is a new format appeared recently with great potential for specific extraction of cis-diol-containing compounds. Unlike conventional SPME, BA-SPME relies on covalent interactions and thereby features with specific selectivity, eliminated matrix effect and manipulable capture/release. However, only on-fiber BA-SPME and its off-line combination with high performance liquid chromatography (HPLC) have been reported so far. In this study, we report on-line coupling of in-tube BA-SPME with HPLC-electrospray ionization tandem mass spectroscopy (in-tube BA-SPME-HPLC-ESI-MS/MS) for the specific and sensitive determination of cis-diol-containing biomolecules. A boronate affinity extraction phase was prepared onto the inner surface of the capillary by copolymerization of vinylphenylboronic acid (VPBA) and ethylene glycol dimethacrylate (EDMA). The extraction conditions were optimized by choosing appropriate extraction/desorption solutions and extraction time. The extraction capacity, linear range, reproducibility and life-time were investigated. The developed method was successfully applied for the determination of dopamine in urine samples. Since many cis-diol-containing compounds are of great biological importance, the in-tube BA-SPME-HPLC method can be a promising tool.  相似文献   
105.
Composite material PANI/KIT-6, with polyaniline (PANI) chains encapsulated in the 3-D interconnected pore channels of mesoporous silica, KIT-6, has been synthesized via a gas-phase method. The composite formation and the presence of PANI inside the pore channels of KIT-6 were evidenced by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), small-angle X-ray scatter (SAXS), transmission electron microscopy (TEM), and N2 adsorption–desorption isotherms. The PANI/KIT-6 composite showed good electrical conductivity (2.4 × 10?3 S/cm) due to the formation of 3-D networks of PANI inside the 3-D interconnected channels of KIT-6. The resistance of PANI/KIT-6 composite at different relative humidities (RH) was investigated. An essentially linear relationship between the relative resistance of the composite and the relative humidity of the environment was found from 11.3% to 97.3% RH.  相似文献   
106.
Bulk MgB2 doped with C and Fe was prepared by using the solid state sintering method with C6H10FeO6 as dopant. The phase composition, microstructure, and superconducting properties were studied. X-ray diffraction (XRD) shows the presence of iron after the doping. The addition of C6H10FeO6 increases the a- and c-axis parameters of MgB2, as evidenced by the shifting of the (100) and (002) peaks to a lower angle on the XRD patterns. Fe atoms were distributed uniformly, as shown by the field emission scanning electron microscope images, while the magnetization of the sample was dominated by the signals from the MgB2 superconductor, although the iron-containing materials also contributed a minor amount of magnetization. The residual resistivity ratio was decreased as the C6H10FeO6 doping level increased. The critical temperature also decreased with increased doping level, as did the critical current density, Jc. The doping also caused decreases in the irreversibility field, Hirr, and the upper critical field, Hc2. The decrease in Hc2 and Hirr, together with the harmful effects from impurity phases such as MgO is the reason for the decrease in Jc.  相似文献   
107.
A double B←N bridged bipyridyl (BNBP) is a novel electron‐deficient building block for polymer electron acceptors in all‐polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low‐lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P‐BNBP‐T) exhibits high electron mobility, low‐lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all‐polymer solar cell (all‐PSC) devices with P‐BNBP‐T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38 %, which is among the highest values of all‐PSCs with PTB7 as the electron donor.  相似文献   
108.
Asymmetric conjugate alkynylation of cyclic α,β‐unsaturated carbonyl compounds (ketones, esters, and amides) was realized by use of diphenyl[(triisopropylsilyl)ethynyl]methanol as an alkynylating reagent in the presence of a rhodium catalyst coordinated with a new chiral diene ligand (Fc‐bod; bod=bicyclo[2.2.2]octa‐2,5‐diene, Fc=ferrocenyl) to give high yields of the corresponding β‐alkynyl‐substituted carbonyl compounds with 95–98 % ee.  相似文献   
109.
110.
Nanoporous (NP) PtRu alloys with three different bimetallic components were straightforwardly fabricated by dealloying PtRuAl ternary alloys in hydrochloric acid. Selective etching of aluminum from source alloys generates bicontinuous network nanostructures with uniform size and structure. The as‐made NP‐PtRu alloys exhibit superior catalytic activity toward the hydrolytic dehydrogenation of ammonia borane (AB) than pure NP‐Pt and NP‐Ru owing to alloying platinum with ruthenium. The NP‐Pt70Ru30 alloy exhibits much higher specific activity toward hydrolytic dehydrogenation of AB than NP‐Pt30Ru70 and NP‐Pt50Ru50. The hydrolysis activation energy of NP‐Pt70Ru30 was estimated to be about 38.9 kJ mol?1, which was lower than most of the reported activation energy values in the literature. In addition, recycling tests show that the NP‐Pt70Ru30 is still highly active in the hydrolysis of AB even after five runs, which indicates that NP‐PtRu alloy accompanied by the network nanoarchitecture is beneficial to improve structural stability toward the dehydrogenation of AB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号