首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   1篇
化学   69篇
晶体学   2篇
力学   5篇
数学   3篇
物理学   25篇
  2022年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   4篇
  2010年   7篇
  2009年   5篇
  2008年   2篇
  2007年   8篇
  2006年   7篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   6篇
  1998年   2篇
  1996年   2篇
  1995年   5篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
排序方式: 共有104条查询结果,搜索用时 15 毫秒
41.
Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities >10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.  相似文献   
42.
43.
Convergent Beam Electron Diffraction (CBED) experiments and simulations associated with Finite Element calculations were performed in order to measure strain and stress in a complex device such as periodic MOS transistors with a spatial resolution of about 2 nm and a sensitivity that could reach 50 MPa. A lamella of a thickness of about 475 nm was extracted from the wafer with the transistors by Focus Ion Beam (FIB) and was observed in cross-section in a Transmission Electron Microscope (TEM). When approaching the transistors, the HOLZ lines of the CBED patterns acquired in the silicon substrate, become broader and broader. This HOLZ line broadening, which is due to the stress relaxation in the thin foil, was used to determine quantitatively the strain and stress in the lamella and then in the bulk device. We showed that this procedure could be applied to a complex device. Two parameters, the intrinsic material strains – or equivalently the intrinsic material stresses – in the nickel silicide (NiSi) and nitride (Si3N4) layers on the top of the transistors gate, were successfully fitted by trial and error, in the procedure.  相似文献   
44.
We present a study of the temperature non-homogeneities induced by millisecond laser annealing in advanced CMOS technologies at die level. Because of the design, the device layout at the wafer surface introduces during this anneal significant spatial variations of optical absorption and heat transfer that can induce temperature non-uniformities over the die, often called ‘pattern effects’. These temperature variations are becoming a major issue, since they are the origin of significant device properties dispersion. A complete optical and thermal simulation set has been developed to estimate the temperature variations induced by the topologies at the wafer surface during the laser anneal process. The modelling has been validated by either a comparison with another software or reflectometry and electrical measurements on real structures. This work demonstrates that the temperature variations are caused either by optical coupling or by thermal properties dispersion present at the wafer surface at the anneal step. Finally, we demonstrate that the impact of the thin-film interferences and diffraction phenomena is the critical issue for these pattern effects.  相似文献   
45.
46.

Background  

The hematopoietic Granulocyte-Colony Stimulating Factor (G-CSF) plays a crucial role in controlling the number of neutrophil progenitor cells. Its function is mediated via the G-CSF receptor, which was recently found to be expressed also in the central nervous system. In addition, G-CSF provided neuroprotection in models of neuronal cell death. Here we used the retinal ganglion cell (RGC) axotomy model to compare effects of local and systemic application of neuroprotective molecules.  相似文献   
47.
48.
The visual clarity of the colour changes at the end-points in the compleximetric titration of calcium is discussed for the metallochromic indicators, arsenazo-III, calcein, calcon, eriochrome blue black B, methylthymol blue, murexide, phthalein complexone, and thymolphthalein complexone. The colour changes were specified with the help of CIE chromaticity diagrams. The sharpness of the colour changes of the indicators was studied by varying the optical (or colour) concentration. Thymolphtalein complexone and phthalein complexone are shown to be the most appropriate indicators for the visual titration of calcium with EDTA.  相似文献   
49.
50.
A procedure consisting of connecting in series two different HPLC columns, one for size-exclusion chromatography (SEC) and the second one a normal-phase (silica) column has been developed. An automatic three-way switching valve was placed between the two columns. Through the valve, the polymer was drained whereas the rest of the compounds, a group of antioxidants and UV stabilizers, were separated and analyzed in the second column. The behaviour of the SEC column in different organic phases is studied. Detection limits about 0.1 μg ml−1 were obtained for BHT, Tinuvin 326 and Tinuvin 327; 0.2 μg ml−1 for Irganox 1076, and 1.1 μg ml−1 for Cyasorb UV 9 and Cyasorb UV 1084. R.S.D. values of the whole process are lower than 4%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号