首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   585824篇
  免费   20333篇
  国内免费   2009篇
化学   342006篇
晶体学   8333篇
力学   26995篇
综合类   22篇
数学   65664篇
物理学   165146篇
  2021年   6514篇
  2020年   8906篇
  2019年   7422篇
  2018年   8763篇
  2017年   7081篇
  2016年   15058篇
  2015年   11375篇
  2014年   14261篇
  2013年   29365篇
  2012年   21588篇
  2011年   23724篇
  2010年   18999篇
  2009年   19164篇
  2008年   21801篇
  2007年   21495篇
  2006年   19270篇
  2005年   17558篇
  2004年   16048篇
  2003年   14359篇
  2002年   14136篇
  2001年   15824篇
  2000年   12066篇
  1999年   9316篇
  1998年   7754篇
  1997年   7822篇
  1996年   7446篇
  1995年   6838篇
  1994年   6594篇
  1993年   6628篇
  1992年   7167篇
  1991年   7305篇
  1990年   6850篇
  1989年   6873篇
  1988年   6870篇
  1987年   6734篇
  1986年   6382篇
  1985年   8773篇
  1984年   8931篇
  1983年   7402篇
  1982年   7776篇
  1981年   7587篇
  1980年   7277篇
  1979年   7643篇
  1978年   7832篇
  1977年   7951篇
  1976年   8179篇
  1975年   7665篇
  1974年   7677篇
  1973年   7870篇
  1972年   5484篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
In the direct simulation Monte‐Carlo (DSMC) method for simulating rarefied gas flows, the velocities of simulator particles that cross a simulation boundary and enter the simulation space are typically generated using the acceptance–rejection procedure that samples the velocities from a truncated theoretical velocity distribution that excludes low and high velocities. This paper analyses an alternative technique, where the velocities of entering particles are obtained by extending the simulation procedures to a region adjacent to the simulation space, and considering the movement of particles generated within that region during the simulation time step. The alternative method may be considered as a form of acceptance–rejection procedure, and permits the generation of all possible velocities, although the population of high velocities is depleted with respect to the theoretical distribution. Nevertheless, this is an improvement over the standard acceptance–rejection method. Previous implementations of the alternative method gave a number flux lower than the theoretical number required. Two methods for obtaining the correct number flux are presented. For upstream boundaries in high‐speed flows, the alternative method is more computationally efficient than the acceptance–rejection method. However, for downstream boundaries, the alternative method is extremely inefficient. The alternative method, with the correct theoretical number flux, should therefore be used in DSMC computations in favour of the acceptance–rejection method for upstream boundaries in high‐speed flows. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
72.
73.
Experiments concerning the properties of soap films have recently been carried out and these systems have been proposed as experimental versions of theoretical two‐dimensional liquids. A silk filament introduced into a flowing soap film, was seen to demonstrate various stable modes, and these were, namely, a mode in which the filament oscillates and one in which the filament is stationary and aligns with the flow of the liquid. The system could be forced from the oscillatory mode into the non‐ oscillatory mode by varying the length of the filament. In this article we use numerical and computational techniques in order to simulate the strongly coupled behaviour of the filament and the fluid. Preliminary results are presented for the specific case in which the filament is seen to oscillate continuously for the duration of our simulation. We also find that the filament oscillations are strongly suppressed when we reduce the effective length of the filament. We believe that these results are reminiscent of the different oscillatory and non‐oscillatory modes observed in experiment. The numerical solutions show that, in contrast to experiment, vortices are created at the leading edge of the filament and are preferentially grown in the curvature of the filament and are eventually released from the trailing edge of the filament. In a similar manner to oscillating hydrofoils, it seems that the oscillating filaments are in a minimal energy state, extracting sufficient energy from the fluid to oscillate. In comparing numerical and experimental results it is possible that the soap film does have an effect on the fluid flow especially in the boundary layer where surface tension forces are large. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
74.
The interaction between multiple incompressible air jets has been studied numerically and experimentally. The numerical predictions have been first validated using experimental data for a single jet configuration. The spreading features of five unequal jets in the configuration of one larger central jet surrounded by four smaller equi‐distant jets, have been studied, for different lateral spacing ratios of 1.5, 2.0 and 2.5 and a central jet Reynolds number of 1.24×105 (corresponding to a Mach number of 0.16). Flow of five equal jets has also been simulated, for the sake of comparison. The jet interactions commence at an axial distance of about 3–4 diameters and complete by an axial distance of about 10 diameters for the lowest spacing ratio of 1.5. For larger spacing ratios, the length required for the start and completion of jet interaction increase. Peripheral jets bend more towards the central jet and merge at a smaller distance, when their sizes are smaller than that of the central jet. The entrainment ratio for multiple jets is higher than that for a single jet. Excellent agreement is observed between the experimental data and theoretical predictions for both mean flow field and turbulent quantities, at regions away from the jet inlet. The potential core length and initial jet development, however, are not predicted very accurately due to differences in the assumed and actual velocity profiles at the jet inlet. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
75.
A preconditioning approach based on the artificial compressibility formulation is extended to solve the governing equations for unsteady turbulent reactive flows with heat release, at low Mach numbers, on an unstructured hybrid grid context. Premixed reactants are considered and a flamelet approach for combustion modelling is adopted using a continuous quenched mean reaction rate. An overlapped cell‐vertex finite volume method is adopted as a discretisation scheme. Artificial dissipation terms for hybrid grids are explicitly added to ensure a stable, discretised set of equations. A second‐order, explicit, hybrid Runge–Kutta scheme is applied for the time marching in pseudo‐time. A time derivative of the dependent variable is added to recover the time accuracy of the preconditioned set of equations. This derivative is discretised by an implicit, second‐order scheme. The resulting scheme is applied to the calculation of an infinite planar (one‐dimensional) turbulent premixed flame propagating freely in reactants whose turbulence is supposed to be frozen, homogeneous and isotropic. The accuracy of the results obtained with the proposed method proves to be excellent when compared to the data available in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
76.
This paper presents an evaluation of the capability of turbulence models available in the commercial CFD code FLUENT 6.0 for their application to hydrofoil turbulent boundary layer separation flow at high Reynolds numbers. Four widely applied two‐equation RANS turbulence models were assessed through comparison with experimental data at Reynolds numbers of 8.284×106 and 1.657×107. They were the standard k–εmodel, the realizable k–εmodel, the standard k–ωmodel and the shear‐stress‐transport (SST) k–ωmodel. It has found that the realizable k–εturbulence model used with enhanced wall functions and near‐wall modelling techniques, consistently provides superior performance in predicting the flow characteristics around the hydrofoil. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
77.
78.
79.
Preliminary results are reported on the two-particle correlation function R(Q) in hadronic Z decays, fully hadronic WW decays, and mixed hadronic-leptonic WW decays using data collected by the DELPHI detector at LEP at energies between 189 and 206 GeV. Evidence for Bose-Einstein correlations was observed in all three cases. The event mixing technique was used to determine correlations between particles arisingfrom different W bosons in fully hadronic WW decays. An excess of like-sign particle pairs with low four-momentum difference in fully hadronic WW events is observed, consistent with the effect expected from correlations between identical particles from different W bosons.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号