首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697765篇
  免费   6539篇
  国内免费   1905篇
化学   347798篇
晶体学   9395篇
力学   36314篇
综合类   24篇
数学   98793篇
物理学   213885篇
  2021年   5725篇
  2020年   6255篇
  2019年   7067篇
  2018年   13517篇
  2017年   13916篇
  2016年   15354篇
  2015年   7945篇
  2014年   12314篇
  2013年   29173篇
  2012年   25052篇
  2011年   34028篇
  2010年   23780篇
  2009年   23794篇
  2008年   31183篇
  2007年   33048篇
  2006年   23521篇
  2005年   24318篇
  2004年   21114篇
  2003年   19415篇
  2002年   18089篇
  2001年   18622篇
  2000年   14536篇
  1999年   11114篇
  1998年   9444篇
  1997年   9242篇
  1996年   8860篇
  1995年   7917篇
  1994年   7818篇
  1993年   7525篇
  1992年   8085篇
  1991年   8564篇
  1990年   8053篇
  1989年   7960篇
  1988年   7793篇
  1987年   7600篇
  1986年   7269篇
  1985年   9502篇
  1984年   9822篇
  1983年   8197篇
  1982年   8514篇
  1981年   7933篇
  1980年   7629篇
  1979年   8104篇
  1978年   8395篇
  1977年   8231篇
  1976年   8218篇
  1975年   7879篇
  1974年   7654篇
  1973年   8043篇
  1972年   5632篇
排序方式: 共有10000条查询结果,搜索用时 109 毫秒
991.
Catalytic properties of silica-supported heteropolyacids (HPA) in a mechanical mixture with reduced Me-Ce oxides (Me = Ni, Pd) in n-hexane isomerization are studied. The role of each component of the mixed oxides (Ce and, typically, Ni and Pd) and their optimum content has been illuminated: cerium is not only beneficial for eliminating or preventing coke deposition but is also effective for maintaining the Keggin structure of the highly-organized HPA during the reaction and probably allows a better dispersion of the second metal species. Nickel and palladium, present as Ni0 and Pd0, reinforce the activation of the alkane, which is difficult to obtain by means of a direct attack by an acid, and, thus, enhance noticeably the activity of the catalyst. The best mechanical mixtures are obtained with 30–70 wt % NiCeO-HPW/SiO2 and 50–50 wt % Pd0.1CeO-HPW/SiO2. These mixtures have the highest efficiency for a Ni/(Ni + W) atomic ratio of 0.66 and a Pd/(Pd + W) ratio of 0.40, respectively. Finally, the conversion of n-hexane is in the order HPW > HSiW > HBW, which seems to be consistent with the order of their acid strength as per the literature, but the isomerization selectivity appears to be slightly higher on HSiW. Published in Russian in Kinetika i Kataliz, 2006, Vol. 47, No. 1, pp. 24–28. The text was submitted by the authors in English.  相似文献   
992.
Analytical and Bioanalytical Chemistry -  相似文献   
993.
994.
995.
996.
997.
Background: Although microemulsion-based nanoparticles (MEs) may be useful for drug delivery or scavenging, these benefits must be balanced against potential nanotoxicological effects in biological tissue (bio-nano interface). We investigated the actions of assembled MEs and their individual components at the bio-nano interface of thrombosis and hemolysis in human blood. Methods: Oil-in-water MEs were synthesized using ethylbutyrate, sodium caprylate, and pluronic F-68 (ME4) or F-127 (ME6) in 0.9% NaClw/v. The effects of MEs or components on thrombosis were determined using thrombo-elastography, platelet contractile force, clot elastic modulus, and platelet counting. For hemolysis, ME or components were incubated with erythrocytes, centrifuged, and washed for measurement of free hemoglobin by spectroscopy. Results and conclusions: The mean particle diameters (polydispersity index) for ME6 and ME4 were 23.6 ± 2.5 nm (0.362) and 14.0 ± 1.0 nm (0.008), respectively. MEs (0, 0.03, 0.3, 3 mM) markedly reduced the thromboelastograph maximal amplitude in a concentration-dependent manner (49.0 ± 4.2, 39.0 ± 5.6, 15.0 ± 8.7, 3.8 ± 1.3 mm, respectively), an effect highly correlated (r2 = 0.94) with similar changes caused by pluronic surfactants (48.7 ± 10.9, 30.7 ± 15.8, 20.0 ± 11.3, 2.0 ± 0.5) alone. Neither oil nor sodium caprylate alone affected the thromboelastograph. The clot contractile force was reduced by ME (27.3 ± 11.1–6.7 ± 3.4 kdynes/cm2, P = 0.02, n = 5) whereas the platelet population not affected (175 ± 28–182 ± 23 106/ml, P = 0.12, n = 6). This data suggests that MEs reduced platelet activity due to associated pluronic surfactants, but caused minimal changes in protein function necessary for coagulation. Although pharmacological concentrations of sodium caprylate caused hemolysis (EC50 = 213 mM), MEs and pluronic surfactants did not disrupt erythrocytes. Knowledge of nanoparticle activity and potential associated nanotoxicity at this bio-nano interface enables rational ME design for in vivo applications.  相似文献   
998.
We study the motion of envelope solitons on anharmonic atomic chains in the presence of dissipation and thermal fluctuations. We consider the continuum limit of the discrete system and apply an adiabatic perturbation theory which yields a system of stochastic integro-differential equations for the collective variables of the ansatz for the perturbed envelope soliton. We derive the Fokker-Planck equation of this system and search for a statistically equivalent system of Langevin equations, which shares the same Fokker-Planck equation. We undertake an analytical analysis of the Langevin system and derive an expression for the variance of the soliton position Var[x s ] which predicts a stronger than linear time dependence of Var[x s ] (superdiffusion). We compare these results with simulations for the discrete system and find they agree well. We refer to recent studies where the diffusion of pulse solitons were found to exhibit a superdiffusive behaviour on longer time scales.Received: 28 June 2004, Published online: 26 November 2004PACS: 05.10.Gg Stochastic analysis methods - 05.45.Yv Solitons - 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 05.50. + q Lattice theory and statistics  相似文献   
999.
About 400 years have passed since the great discoveries by Galileo, Kepler, and Newton, but astronomy still remains an important source of discoveries in physics. They start with puzzles, with phenomena difficult to explain, and phenomena which in fact need new physics for explanation. Do such puzzles exist now? There are at least three candidates: absence of absorption of TeV gamma radiation in extragalactic space (violation of Lorentz invariance?), absence of GZK cutoff in the spectrum of ultrahigh-energy cosmic rays (new particle physics?), tremendous energy (up to 1054 erg) released in gamma ray bursts on a time scale of a second (collapsing stars or sources of a new type?). Do these puzzles really exist? A critical review of these phenomena is given.  相似文献   
1000.
A side-by-side comparison of the performance of McMaster pore-filled (MacPF) and commercial nanofiltration (NF) membranes is presented here. The single-salt and multi-component performance of these membranes is studied using experimental data and using a mathematical model. The pseudo two-dimensional model is based on the extended Nernst–Planck equation, a modified Poisson–Boltzmann equation, and hydrodynamic calculations. The model includes four structural properties of the membrane: pore radius, pure water permeability, surface charge density and the ratio of effective membrane thickness to water content. The analysis demonstrates that the rejection and transport mechanisms are the same in the commercial and MacPF membranes with different contributions from each type of mechanism (convection, diffusion and electromigration). Solute rejection in NF membranes is determined primarily by a combination of steric and electrostatic effects. The selectivity of MacPF membranes is primarily determined by electrostatic effects with a significantly smaller contribution of steric effects compared to commercial membranes. Hence, these membranes have the ability to reject ions while remaining highly permeable to low molecular weight organics. Additionally, a new theoretical membrane design approach is presented. This design procedure potentially offers the optimization of NF membrane performance by tailoring the membrane structure and operating variables to the specific process, simultaneously. The procedure is validated at the laboratory scale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号