首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   455572篇
  免费   11558篇
  国内免费   4893篇
化学   253428篇
晶体学   6356篇
力学   20066篇
综合类   150篇
数学   53255篇
物理学   138768篇
  2021年   3594篇
  2020年   4162篇
  2019年   4127篇
  2018年   3922篇
  2017年   3718篇
  2016年   7088篇
  2015年   6046篇
  2014年   8025篇
  2013年   21647篇
  2012年   17623篇
  2011年   21391篇
  2010年   13364篇
  2009年   13399篇
  2008年   19047篇
  2007年   19114篇
  2006年   18395篇
  2005年   16602篇
  2004年   14764篇
  2003年   12919篇
  2002年   12670篇
  2001年   14162篇
  2000年   10954篇
  1999年   8810篇
  1998年   7070篇
  1997年   6898篇
  1996年   6925篇
  1995年   6304篇
  1994年   5851篇
  1993年   5523篇
  1992年   6155篇
  1991年   5968篇
  1990年   5487篇
  1989年   5303篇
  1988年   5541篇
  1987年   5136篇
  1986年   4992篇
  1985年   7207篇
  1984年   7196篇
  1983年   5880篇
  1982年   6325篇
  1981年   6258篇
  1980年   6031篇
  1979年   6099篇
  1978年   6151篇
  1977年   6099篇
  1976年   6001篇
  1975年   5880篇
  1974年   5678篇
  1973年   5906篇
  1972年   3449篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Erosion and sediments transport processes have a great impact on industrial structures and on water quality. Despite its limitations, the Saint‐Venant‐Exner system is still (and for sure for some years) widely used in industrial codes to model the bedload sediment transport. In practice, its numerical resolution is mostly handled by a splitting technique that allows a weak coupling between hydraulic and morphodynamic distinct softwares but may suffer from important stability issues. In recent works, many authors proposed alternative methods based on a strong coupling that cure this problem but are not so trivial to implement in an industrial context. In this work, we then pursue 2 objectives. First, we propose a very simple scheme based on an approximate Riemann solver, respecting the strong coupling framework, and we demonstrate its stability and accuracy through a number of numerical test cases. However, second, we reinterpret our scheme as a splitting technique and we extend the purpose to propose what should be the minimal coupling that ensures the stability of the global numerical process in industrial codes, at least, when dealing with collocated finite volume method. The resulting splitting method is, up to our knowledge, the only one for which stability properties are fully demonstrated.  相似文献   
92.
93.
94.
95.
96.
In this paper, we have significantly modified an existing model for calculating the zeta potential and streaming potential coefficient of porous media and tested it with a large, recently published, high-quality experimental dataset. The newly modified model does not require the imposition of a zeta potential offset but derives its high salinity zeta potential behaviour from Stern plane saturation considerations. The newly modified model has been implemented as a function of temperature, salinity, pH, and rock microstructure both for facies-specific aggregations of the new data and for individual samples. Since the experimental data include measurements on samples of both detrital and authigenic overgrowth sandstones, it was possible to model and test the effect of widely varying microstructural properties while keeping lithology constant. The results show that the theoretical model represents the experimental data very well when applied to model data for a particular lithofacies over the whole salinity, from 10?5 to 6.3 mol/dm3, and extremely well when modelling individual samples and taking individual sample microstructure into account. The new model reproduces and explains the extreme sensitivity of zeta and streaming potential coefficient to pore fluid pH. The low salinity control of streaming potential coefficient by rock microstructure is described well by the modified model. The model also behaves at high salinities, showing that the constant zeta potential observed at high salinities arises from the development of a maximum charge density in the diffuse layer as it is compressed to the thickness of one hydrated metal ion.  相似文献   
97.
98.
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号