首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   1篇
化学   36篇
物理学   5篇
  2016年   1篇
  2013年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1994年   1篇
  1992年   2篇
  1991年   2篇
  1987年   1篇
  1981年   1篇
  1976年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
11.
The energetics of the * transition in quadruply bonded complexes are investigated using a very simple valence-bond formalism, called the isolated * manifold (IDDM) model. In this model all electrons except for those that occupy the or * molecular orbitals are ignored, as are explicit metal-ligand interactions. The resulting equations allow the calculation of transition energies very inexpensively, albeit with poor quantitative agreement: the * transition in prototypical quadruple-bond systems is predicted to occur at energies greater than 70,000 cm1. The model incorporates configuration interaction between the two1 A 1g configurations (|| and |**|) to roughly the same extent as do correlated all-electron calculations. The application of the method to systems that involve relative changes in * transition energies, such as the torsional twisting of quadruple bonds, is more successful quantitatively.  相似文献   
12.
The compounds ((t)BuCO(2))(3)M(2)(mu-O(2)CCO(2))M(2)(O(2)C(t)Bu)(3) (M(4)OXA), where M = Mo or W, are shown by analysis of powder X-ray diffraction data to have extended lattice structures wherein oxygen atoms from the oxalate and pivalate ligands of one M(4)OXA molecule are linked to metal atoms of neighboring molecules. Raman, resonance Raman, electronic absorption (2-325 K in 2-MeTHF), and emission spectra are reported, together with corresponding spectra of the mu-O(2)(13)C(13)CO(2) isotopomers. To aid in the assignment, the Raman spectra of K(2)C(2)O(4).H(2)O and K(2)(13)C(2)O(4).H(2)O have also been recorded. The visible region of the electronic spectra is dominated by intense, fully allowed MLCT transitions, M(2) delta to oxalate pi*, which show pronounced thermochromism and extensive vibronic progressions associated with the oxalate ligand at low temperatures. With excitation into these charge-transfer bands, strong resonance enhancement is seen for Raman bands assigned to the oxalate nu(1)(a(g)) and, to a lesser extent, nu(2)(a(g)) modes. Electronic structure calculations for the model compounds (HCO(2))(3)M(2)(mu-O(2)CCO(2))M(2)(O(2)CH)(3), employing density functional theory (gradient corrected and time-dependent) with the Gaussian 98 and ADF 2000 packages, predict the planar oxalate D(2h) configuration to be favored, which maximizes M(2) delta to oxalate pi* back-bonding, and indicate low barriers (<8 kcal mol(-1)) to rotation about the oxalate C-C bonds.  相似文献   
13.
Uranium atoms excited by laser ablation react with CO in excess neon to produce the novel CUO molecule, which forms distinct Ng complexes (Ng = Ar, Kr, Xe) when the heavier noble gases are added. The CUO(Ng) complexes are identified through CO isotopic and Ng substitution on the neon matrix infrared spectra and by comparison to DFT frequency calculations. The U-C and U-O stretching frequencies of CUO(Ng) complexes are slightly red-shifted from frequencies for the (1)Sigma(+) CUO ground state, which identifies singlet ground state CUO(Ng) complexes. In solid neon the CUO molecule is also a complex CUO(Ne)(n), and the CUO(Ne)(n-1)(Ng) complexes are likewise specified. The next singlet CUO(Ne)(x)(Ng)(2) complexes in excess neon follow in like manner. However, the higher CUO(Ne)(x)(Ng)(n) complex (n = 3, 4) stretching modes approach pure argon matrix CUO(Ar)(n) values and isotopic behavior, which are characterized as triplet ground state complexes by DFT frequency calculations. This work suggests that the singlet-triplet crossing occurs with 3 Ar, 3 Kr, or 4 Xe and a balance of Ne atoms coordinated to CUO in the neon matrix host.  相似文献   
14.
The compounds [((t)BuCO(2))(3)M(2)(mu-O(2)CC(6)F(4)CO(2))M(2)(O(2)C(t)Bu)(3)], M(4)PFT, where M = Mo or W, are shown by model fitting of the powder X-ray diffraction data to have an infinite "twisted" structure involving M.O intermolecular interactions in the solid state. The dihedral angle between the M(2) units of each molecule is 54 degrees. Electronic structure calculations employing density functional theory (Gaussian 98 and ADF2000.01, gradient corrected and time dependent) on the model compounds (HCO(2))(3)M(2)(mu-O(2)CC(6)F(4)CO(2))M(2)(O(2)CH)(3), where M = Mo or W, reveal that in the gas phase the model compounds adopt planar D(2)(h) ground-state structures wherein M(2) delta to bridge pi back-bonding is maximized. The calculations predict relatively small HOMO-LUMO gaps of 1.53 eV for M = Mo and 1.22 eV for M = W for this planar structure and that, when the "conjugation" is removed by rotation of the plane of the C(6)F(4) ring to become orthogonal to the M(4) plane, this energy gap is nearly doubled to 2.57 eV for M = Mo and 2.18 eV for M = W. The Raman and resonance Raman spectra of solid M(4)PFT and of Mo(4)PFT in THF solution are dominated by bands assigned to the bridging perfluoroterephthalate (pft) group. The intensities of certain Raman bands of solid W(4)PFT are strongly enhanced on changing the excitation line from 476.5 nm (off resonance) to 676.5 nm, which is on resonance with the W(2) delta --> CO(2) (pft) pi transition at ca. 650 nm. The resonance enhanced bands are delta(s)(CO(2)) (pft) at 518 cm(-)(1) and its first overtone at 1035 cm(-)(1), consistent with the structural change to W(4)PFT expected on excitation from the ground to this pi excited state. The electronic transitions for solid Mo(4)PFT (lowest at 410 nm) were not accessible with the available excitation lines (457.9-676.5 nm), and no resonance Raman spectra of this compound could be obtained. For Mo(4)PFT in THF solution, it is the band at 399 cm(-)(1) assigned to nu(MoMo) which is the most enhanced on approach to resonance with the electronic band at 470 nm; combination bands involving the C(6)F(4) ring-stretching mode, 8a, are also enhanced.  相似文献   
15.
16.
17.
Polymeric reagents prepared by exchanging silver(I) for H+ on a macroreticular polystyrene sulfonate ion exchange resin are shown to be capable of selectively absorbing triphenylphosphine from solutions of triphenylphosphine complexes of rhodium(I) and ruthenium(II). Absorption of triphenylphosphine during alkene hydrogenations catalyzed by RhCl(PPh3)3, RuCl2(PPh3)3 and RuHCl(PPh3)3 led to increased hydrogenation rates in hydrogenation of 1-hexene and other alkenes. Addition of this silver(I) polystyrene sulfonate to alkene hydrogenations catalyzed by HRh(CO) (PPh3)3, RuH2(PPh3)3 and RuH(OCOCH3) (PPh3)3 also led to modest rate accelerations. Catalyst activations seen in these alkene hydrogenations were shown to be due in some cases to triphenylphosphine absorption. In other cases, HCl or HCl plus triphenylphosphine absorption was responsible for the formation of a more active catalyst solution.  相似文献   
18.
The density functional theory (DFT) calculations were used to study the effects of PCP ancillary ligands on the relative stabilities of hydrido amido complexes and ammonia coordination complexes. Calculations on the four compounds 1a, 1b, 2a and 2b containing PCP ligands with t-butyl groups on P atoms showed that 1b is more stable than 1a and 2a is more stable than 2b. Calculations also showed that the relative energies of hydrido amido complexes with respect to the isomeric ammonia coordinated complexes vary with the different substituent groups (R = H, Me and tBu) on the P atoms of the PCP ligands. An alternative method to study the ligand effects introduced by different substituents on the P atoms is to vary the nuclear charge on the P atoms of PCP ligand. The relative energies were predicted to decrease with the nuclear charge of the P atoms on the PCP ligands, which indicates that increasing the electron donating ability tend to favor the hydrido amido complexes over the ammonia coordination complexes:
  相似文献   
19.
Three ternary oxides, SnWO4, PbWO4, and BiVO4, containing p-block cations with ns2np0 electron configurations, so-called lone pair cations, have been studied theoretically using density functional theory and UV-visible diffuse reflectance spectroscopy. The computations reveal significant differences in the underlying electronic structures that are responsible for the varied crystal chemistry of the lone pair cations. The filled 5s orbitals of the Sn2+ ion interact strongly with the 2p orbitals of oxygen, which leads to a significant destabilization of symmetric structures (scheelite and zircon) favored by electrostatic forces. The destabilizing effect of this interaction can be significantly reduced by lowering the symmetry of the Sn2+ site to enable the antibonding Sn 5s-O 2p states to mix with the unfilled Sn 5p orbitals. This interaction produces a localized, nonbonding state at the top of the valence band that corresponds closely with the classical notion of a stereoactive electron lone pair. In compounds containing Pb2+ and Bi3+ the relativistic contraction of the 6s orbital reduces its interaction with oxygen, effectively diminishing its role in shaping the crystal chemical preferences of these ions. In PbWO4 this leads to a stabilization of the symmetric scheelite structure. In the case of BiVO4 the energy of the Bi 6s orbital is further stabilized. Despite this stabilization, the driving force for a stereoactive lone pair distortion appears to be enhanced. The energies of structures exhibiting distorted Bi3+ environments are competitive with structures that possess symmetric Bi3+ environments. Nevertheless, the "lone pair" that results associated with a distorted Bi3+ environment in BiVO4 is more diffuse than the Sn2+ lone pair in beta-SnWO4. Furthermore, the distortion has a much smaller impact on the electronic structure near the Fermi level.  相似文献   
20.
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) was used for the characterization of a partially transesterified poly(beta-hydroxyalkanoate), PHA, polymer produced by the bacterial strain Alcaligenes eutrophus using saponified vegetable oils as the sole carbon sources. The transesterification was carried out separately under acidic and basic conditions to obtain PHA oligomers weighing less than 10 kDa. The intact oligomers were detected in their cationized [M + Na](+) and [M + K](+) forms by MALDI-TOFMS. A composition analysis, using the MALDI-TOF spectra, indicate that the oligomers obtained via acid catalysis were terminated with a methyl 3-hydroxybutyrate end group, and those obtained by base catalysis had a methyl crotonate (olefinic) termination. In addition to HB (hydroxy butyrate), the oligomers were found to contain a small percentage of HV (hydroxy valerate). This was independently confirmed using gas chromatography/mass spectrometry (GC/MS). In comparison, the analysis of a commercial PHA polymer, transesterified under identical conditions, only showed the presence of HB, i.e. a pure PHB homopolymer. Copyright 1999 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号