首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   12篇
力学   1篇
数学   1篇
物理学   6篇
  2013年   1篇
  2011年   1篇
  2008年   1篇
  2007年   2篇
  2003年   1篇
  2000年   6篇
  1999年   1篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
  1988年   1篇
  1984年   2篇
排序方式: 共有20条查询结果,搜索用时 531 毫秒
11.
Pt(II)-catalyzed cycloisomerization of aziridinyl propargylic esters affords 1,2-dihydropyridines with regiodefined installation of substituents. A mild conversion of the 1,2-dihydropyridines to the corresponding substituted pyridines as well as chirality retention from the aziridinyl propargylic ester substrates have been demonstrated.  相似文献   
12.
13.
The influence of various types of background electrolytes (NaCl, NaNO(3), and NaClO(4)) on the proton adsorption and on the adsorption of sulfate and phosphate on goethite have been studied. Below the PZC the proton adsorption on goethite decreases in the order Cl>NO(3)>ClO(4). The decreasing proton adsorption affects the adsorption of oxyanions on goethite. Anion adsorption of strongly binding polyvalent anions is lower in the studied electrolytes in the order Cl相似文献   
14.
Metal (hydr)oxides have different types of surface groups. Fluoride ions have been used as a probe to assess the number of surface sites. We have studied the F(-) adsorption on goethite by measuring the F(-) and H(+) interaction and F(-) adsorption isotherms. Fluoride ions exchange against singly coordinated surface hydroxyls at low F(-) concentrations. At higher concentrations also the doubly coordinated OH groups are involved. The replacement of a surface OH(-) by F(-) suggests that all F charge (-1) is located at the surface in contrast to oxyanions which have a charge distribution in the interface due to the binding structure in which the anion only partially coordinates with the surface. Analysis of our F(-) data with the CD-MUSIC approach shows that the formation of the fluoride surface complex is accompanied by a redistribution of charge. This is supposed to be due to a net switch in the H bonding as a result of the change of the type of surface complex from donating (FeOH, FeOH(2)) to proton accepting (FeF). The modeled redistribution of charge is approximately equivalent with the change of a donating H bond into an accepting H bond. At high F(-) concentrations precipitation of F(-), as for instance FeF(3)(s), may occur. The rate of formation is catalyzed by the presence of high electrolyte concentrations. Copyright 2000 Academic Press.  相似文献   
15.
Ethyl vinyl ether, MEM chloride, and dihydropyran based acetals of homoallylic and homopropargylic alcohols cyclize in the presence of Lewis acids to give 4-halotetra-hydropyrans and 4-halo-5,6-dihydro-2H-pyrans, respectively.  相似文献   
16.
ARC-length method for differential equations   总被引:1,自引:0,他引:1  
IntroductionTheordinaryandpartialdiferentialequationsofcontinuumproblemareoftenwithcertaintypesofsingularityasstifproperty,or...  相似文献   
17.
Indolizine, pyrrolone, and indolizinone heterocycles are easily accessed via the Pt(II)-catalyzed cycloisomerization or a tandem cyclization/1,2-migration of pyridine propargylic alcohols and derivatives. This method provides an efficient synthesis of highly functionalized heterocycles from readily available substrates. [reaction: see text]  相似文献   
18.
Hydrogenation of     
The course of the hydrogenation of [5]- and [6]metacyclophane (1b and 1c) and their thermochemistry is described. Both compounds are hydrogenated rapidly (within 10 s) to furnish the bridgehead olefins 13b and 12c. The accompanying hydrogenation enthalpies are -220 and -141 kJmol(-1), respectively. Strain energies (SE) and olefinic strains (OS) of a number of bridgehead olefins have been evaluated by DFT calculations; it was concluded that 13b belongs to the class of hyperstable olefins which correlates nicely with its reluctance to undergo hydrogenation. By combining experimental hydrogenation enthalpies and DFT calculations, SE of 187 and 121 kJmol(-1) were derived for 1b and 1c.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号