首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   12篇
化学   215篇
晶体学   1篇
力学   7篇
数学   17篇
物理学   12篇
  2023年   3篇
  2022年   8篇
  2021年   6篇
  2020年   8篇
  2019年   6篇
  2018年   2篇
  2017年   7篇
  2016年   7篇
  2015年   9篇
  2014年   8篇
  2013年   20篇
  2012年   17篇
  2011年   25篇
  2010年   6篇
  2009年   15篇
  2008年   17篇
  2007年   10篇
  2006年   15篇
  2005年   10篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1991年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有252条查询结果,搜索用时 0 毫秒
81.
The coupled reference interaction site model-hyper-netted chain (RISM-HNC)/ simulation methodology determines solvation free energies as a function of the set of all radial distribution functions of solvent atoms about atomic solute sites. These functions are determined from molecular dynamics (MD) or Monte Carlo (MC) simulations rather than from solving the RISM and HNC equations iteratively. Previous applications of the method showed that it can predict relative free energies of solvation for small solutes accurately. However, the errors scale with the system size. In this study, we propose the use of the hard-sphere free energy as the reference and a linear response approximation to improve the performance, i.e., accuracy and robustness, of the method, particularly removing the size dependency of the error. The details of the new formalism are presented. To validate the proposed formalism, solvation free energies of N-methylacetamide and methylamine are computed using the new RISM-HNC-based expressions in addition to a linear response expression, which are compared to previous thermodynamic integration and thermodynamic perturbation results performed with the same force field. Additionally, free energies of solvation for cyclohexane, pyridine, benzene and derivatives, and other small organic molecules are calculated and compared to experimental values.  相似文献   
82.
.Organoantimony(III) and organobismuth(III) phosphates (LM)(3)(PO(4))(2) [M = Sb (3) and Bi (4)], containing the NCN-chelating ligand L [L = 2,6-(CH(2)NMe(2))(2)C(6)H(3)], were prepared by the simple treatment of parent oxides 1 and 2 with H(3)PO(4). Both compounds were characterized by elemental analysis, electrospray ionization mass spectrometry, and IR and NMR spectroscopy and in the case of 3 by X-ray diffraction techniques. Compound 3 has an interesting behavior in solution, i.e., the formation of two possible conformational isomers, which was studied by (1)H, (13)C, and (31)P NMR spectroscopy.  相似文献   
83.
The alkylation of 3-phenyl-6-(2-thienyl)pyrrolo[3,4-c]pyrrole-1,4-dione with 1-bromo-2-ethylhexane was performed. Besides the expected N,N′-dialkylated product, both possible N,O-dialkyl derivatives were isolated and identified for the first time. The position of the alkyl substituents in all three dialkylated isomers was determined by 2D 1H and 13C NMR spectroscopy.  相似文献   
84.
1-Substituted-3-aminoquinoline-2,4(1H,3H)-diones react with potassium cyanate or potassium thiocyanate in boiling acetic acid to give ureido- or thioureidooxindoles, spiro-oxindoles and dihydroimidazoquinolones. However, if the starting compounds are substituted with a benzyl group at position 3, a C-debenzylation proceeds to give imidazoquinolones. According to a proposed reaction mechanism, a molecular rearrangement of the primarily formed mono-substituted urea or thiourea takes place. All compounds were characterized by 1H, 13C and IR spectroscopy and MS data.  相似文献   
85.
86.
87.
The present procedure is based on the sequential selective reduction of mercury(II) and methyl mercury using two gas–liquid separators in series. Cold vapor atomic absorption spectrometry was used for detection. Mercury(II) is reduced by a 0.01% m/v sodium tetrahydroborate solution and driven to the absorption cell in the first separator. The methyl mercury species is reduced by the same reductant but at a 0.3% m/v concentration, and in the presence of iron(III) chloride. Parameters such as argon flow rate, and the NaBH4 and dithiophosphoric acid diacyl ester concentrations were optimized. At the optimized conditions, and using aqueous standards for calibration, the corresponding limits of detection (3σb, n=10) were 400 and 600 ng l−1 for mercury(II) and methyl mercury, respectively. The sample throughput was 12 h−1. The procedure was used for the determination of methyl mercury in dogfish liver and dogfish muscle certified reference materials, and good concordance between found and certified values was observed.  相似文献   
88.
89.
90.
Bacteria possess surface properties, related to their charge, hydrophobicity and Lewis acid/base characteristics, that are involved in the attachment processes of microorganisms to surfaces. Fermentation bulks and food matrixes are complex heterogeneous media containing various components with different physicochemical characteristics. The aim of the present study was to investigate whether (i) bacteria present in a food matrix, interacted physicochemically at their surface level with the other constituents and (ii) the diversity of bacterial surface properties could result in a diversity of microbial adhesion to components and thus in a diversity of tolerance to toxic compounds. The surface properties of 20 lactic acid bacteria were characterized by the MATS method showing their relatively hydrophilic and various basic characteristics. The results obtained from a set of representative strains showed that (i) the strains with higher affinity for apolar solvents adsorbed more to lipids and hydrophobic compounds, (ii) the more the strains adsorbed to a toxic solvent, the less they were tolerant to this solvent. A diversity of bacterial surface properties was observed for the strains in the same species showing the importance of choosing bacteria according to their surface properties in function of technological objectives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号