首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   105篇
  免费   6篇
化学   63篇
力学   10篇
物理学   38篇
  2022年   1篇
  2021年   10篇
  2020年   3篇
  2019年   15篇
  2018年   4篇
  2017年   6篇
  2016年   14篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   8篇
  2011年   6篇
  2010年   5篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1998年   2篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1974年   1篇
排序方式: 共有111条查询结果,搜索用时 15 毫秒
61.
The halogen bond has previously been explored as a versatile tool in crystal engineering and anion coordination chemistry, with mechanochemical synthetic techniques having been shown to provide convenient routes towards cocrystals. In an effort to expand our knowledge on the role of halogen bonding in anion coordination, here we explore a series of cocrystals formed between 3-iodoethynylpyridine and 3-iodoethynylbenzoic acid with halide salts. In total, we report the single-crystal X-ray structures of six new cocrystals prepared by mechanochemical ball milling, with all structures exhibiting C≡C−I⋅⋅⋅X (X=Cl, Br) halogen bonds. Whereas cocrystals featuring a pyridine group favoured the formation of discrete entities, cocrystals featuring a benzoic acid group yielded an alternation of halogen and hydrogen bonds. The compounds studied herein were further characterized by 13C and 31P solid-state nuclear magnetic resonance, with the chemical shifts offering a clear and convenient method of identifying the occurrence of halogen bonding, using the crude product obtained directly from the mechanochemical ball milling. Whereas the 31P chemical shifts were quickly able to identify the occurrence of cocrystallization, 13C solid-state NMR was diagnostic of both the occurrence of halogen bonding and of hydrogen bonding.  相似文献   
62.
Physics of the Solid State - We have studied the structure of epitaxial graphene obtained as a result of thermal desorption of the silicon carbide surface under conditions of vacuum synthesis and...  相似文献   
63.
64.
A new strategy for the synthesis of bifunctional compounds, based on 1,3-alternate tetrathiacalix[4]arene precursors functionalized by pairs of carboxylic acid and ester groups located on opposite sides of the macrocycle platform is described. These building blocks were prepared by the Cs2CO3 induced selective hydrolysis of tetrathiacalix[4]arene tetraester derivatives. A mechanism for the selective hydrolysis is suggested. The structures of the compounds are elucidated by NMR spectroscopic analysis and X-ray single crystal diffraction.  相似文献   
65.
The paper describes a novel SPME-based approach for sampling and analysis of transformation products of highly reactive and toxic unsymmetrical dimethylhydrazine (UDMH) which is used as a fuel in many Russian, European, Indian, and Chinese heavy cargo carrier rockets. The effects of several parameters were studied to optimize analyte recovery. It was found that the 85 μm Carboxen/polydimethylsiloxane fiber coating provides the highest selectivity for selected UDMH transformation products. Optimal sampling/sample preparation parameters were determined to be 1-h soil headspace sampling time at 40 °C. The GC inlet temperature was optimized to 170 °C held for 0.1 min, then 1 °C s−1 ramp to 250 °C where it was held for 40 min. Temperature programing resulted in a fast desorption along with minimal chemical transformation in the GC inlet. SPME was very effective extracting UDMH transformation products from soil samples contaminated with rocket fuel. The use of SPME resulted in high sensitivity, speed, small labor consumption due to an automation and simplicity of use. It was shown that water addition to soil leads to a significant decrease of recovery of almost all target transformation products of UDMH. The use of SPME for sampling and sample preparation resulted in detection of the total of 21 new compounds that are relevant to the UDMH transformation in soils. In addition, the number of confirmed transformation products of UDMH increased from 15 to 27. This sampling/sample preparation approach can be recommended for environmental assessment of soil samples from areas affected by space rocket activity.  相似文献   
66.
A new and simple method for benzene, toluene, ethylbenzene and o-xylene (BTEX) quantification in vehicle exhaust was developed based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME) fiber coating. The rationale was to develop a method based on existing and proven SPME technology that is feasible for field adaptation in developing countries. Passive sampling with SPME fiber retracted into the needle extracted nearly two orders of magnitude less mass (n) compared with exposed fiber (outside of needle) and sampling was in a time weighted-averaging (TWA) mode. Both the sampling time (t) and fiber retraction depth (Z) were adjusted to quantify a wider range of Cgas. Extraction and quantification is conducted in a non-equilibrium mode. Effects of Cgas, t, Z and T were tested. In addition, contribution of n extracted by metallic surfaces of needle assembly without SPME coating was studied. Effects of sample storage time on n loss was studied. Retracted TWA–SPME extractions followed the theoretical model. Extracted n of BTEX was proportional to Cgas, t, Dg, T and inversely proportional to Z. Method detection limits were 1.8, 2.7, 2.1 and 5.2 mg m−3 (0.51, 0.83, 0.66 and 1.62 ppm) for BTEX, respectively. The contribution of extraction onto metallic surfaces was reproducible and influenced by Cgas and t and less so by T and by the Z. The new method was applied to measure BTEX in the exhaust gas of a Ford Crown Victoria 1995 and compared with a whole gas and direct injection method.  相似文献   
67.
In situ oxidation of the GaI compound NacNacGa by either N2O or pyridine oxide results in the generation of a labile monomeric oxide, NacNacGa(O), which can easily cleave the C?H bonds of aliphatic and aromatic substrates featuring good donor sites. The products of this reaction are gallium organyl hydroxides. DFT calculations show that these reactions start with the formation of NacNac‐Ga(O)(L) adducts, the oxo ligand of which can easily abstract protons from nearby C?H bonds, even for sp2‐hybridized carbon centers. Aliphatic amines do not enter this reaction for kinetic reasons, presumably because of the unfavorable sterics.  相似文献   
68.
We studied the influence of 5 kDa poly(acrylic acid) (PAA) on the phase state, thermal properties, and lateral diffusion in bilayered systems of dimyristoylphosphatidylcholine (DMPC) using (31)P NMR spectroscopy, differential scanning calorimetry (DSC), (1)H NMR with a pulsed field gradient, and (1)H nuclear Overhauser enhancement spectroscopy (NOESY). The presence of PAA does not change the lamellar structure of the system. (1)H MAS NOESY cross-peaks observed for the interaction between lipid headgroups and polyion protons demonstrated only surface PAA-biomembrane interaction. Small concentrations of PAA (up to ~4 mol %) lead to the appearance of a new lateral phase with a higher main transition temperature, a lower cooperativity, and a lower enthalpy of transition. Higher concentrations lead to the disappearance of measurable thermal effects. The lateral diffusion coefficient of DMPC and the apparent activation energy of diffusion gradually decreased at PAA concentrations up to around 4 mol %. The observed effects were explained by the formation of at least two types of PAA-DMPC lateral complexes as has been described earlier (Fujiwara, M.; Grubbs, R. H.; Baldeschwieler, J. D. J. Colloid Interface Sci., 1997, 185, 210). The first one is characterized by a stoichiometry of around 28 lipids per polymer, which corresponds to the adsorption of the entire PAA molecule onto the membrane. Lipid molecules of the complex are exchanged with the "pure" lipid bilayer, with the lifetime of the complex being less than 0.1 s. The second type of DMPC-PAA complex is characterized by a stoichiometry of 6 to 7 lipids per polymer and contains PAA molecules that are only partially adsorbed onto the membrane. A decrease in the DMPC diffusion coefficient and activation energy for diffusion in the presence of PAA was explained by the formation of a new cooperative unit for diffusion, which contains the PAA molecule and several molecules of lipids.  相似文献   
69.
The dependences of the electrical conductivity and thermopower on the size of grains in a nanocrystalline material based on Bi2Te3-Sb2Te3 solid solutions of the p type have been investigated theoretically and experimentally. The relaxation time in the case of hole scattering by nanograin boundaries in an isotropic polycrystal has been calculated taking into account the energy dependence of the probability of tunneling of charge carriers and the dependence of the scattering intensity on the nanograin size L n . A decrease in the probability of boundary scattering with an increase in the energy of charge carriers leads to an increase in the thermopower. The dependences of the thermopower and electrical conductivity on the nanograin size, which have been obtained taking into account the boundary scattering and scattering by acoustic phonons, are in good agreement with experimental data. For the material under consideration, the thermopower coefficient increases by 10–20% compared to the initial solid solution at L n = 20–30 nm. This can lead to an increase in the thermoelectric figure of merit by 20–40%, provided that the decrease in the electrical conductivity and the decrease in the lattice thermal conductivity compensate each other. Despite the absence of a complete compensation, it has been possible to increase the thermoelectric figure of merit for the samples under investigation to ZT = 1.10–1.12.  相似文献   
70.
The subject of the study was silicate–phosphate glasses of NaCaPO4–SiO2 system which are precursors of glass–crystalline materials. Glass–crystalline materials of NaCaPO4–SiO2 system obtained via crystallization of glasses belong to a group of the so-called bioactive materials. In order to obtain glass–crystalline materials with pre-established parameters, it is necessary to conduct crystallization of glasses at specific conditions. In order to design direct crystallization process properly, it is necessary to know the structure and microstructure of the glassy precursor. Microscopic investigation showed that liquation takes place in all the studied glasses. Based on DSC examinations, it has been found out that crystallization of the glasses of NaCaPO4–SiO2 system is a multistep process. The presence of several clearly separated exothermic peaks in DSC curves of investigated glasses makes it possible to crystallize only the separated phase with the matrix remaining amorphous or vice versa. Conducted detailed X-ray and spectroscopic studies of the materials obtained by heating in a gradient furnace (in the temperature specified on the basis of DSC) showed that separated phase and matrix crystallizes separately. Therefore, bioactive glass–crystalline materials can be obtained due to the existence of the phase separation phenomenon and pre-established sizes of the crystalline phase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号