首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2087篇
  免费   78篇
  国内免费   9篇
化学   1349篇
晶体学   57篇
力学   50篇
数学   197篇
物理学   521篇
  2024年   9篇
  2023年   26篇
  2022年   52篇
  2021年   41篇
  2020年   56篇
  2019年   52篇
  2018年   33篇
  2017年   30篇
  2016年   59篇
  2015年   56篇
  2014年   79篇
  2013年   161篇
  2012年   118篇
  2011年   154篇
  2010年   81篇
  2009年   79篇
  2008年   123篇
  2007年   133篇
  2006年   72篇
  2005年   72篇
  2004年   61篇
  2003年   35篇
  2002年   33篇
  2001年   29篇
  2000年   17篇
  1999年   9篇
  1998年   13篇
  1997年   12篇
  1996年   18篇
  1995年   21篇
  1994年   24篇
  1993年   26篇
  1992年   20篇
  1990年   11篇
  1989年   12篇
  1988年   19篇
  1987年   17篇
  1986年   19篇
  1985年   21篇
  1984年   21篇
  1983年   24篇
  1982年   20篇
  1981年   19篇
  1980年   19篇
  1979年   17篇
  1978年   22篇
  1977年   13篇
  1976年   19篇
  1974年   16篇
  1973年   12篇
排序方式: 共有2174条查询结果,搜索用时 10 毫秒
71.
Metal complexes of multi-porphyrins and multi-corroles are unique systems that display a host of extremely interesting properties. Availability of free meso and β positions allow formation of different types of directly linked bis-porphyrins giving rise to intriguing optical and electronic properties. While the fields of metalloporphyrin and corroles monomer have seen exponential growth in the last decades, the chemistry of metal complexes of bis-porphyrins and bis-corroles remain rather underexplored. Therefore, the impact of covalent linkages on the optical, electronic, (spectro)electrochemical, magnetic and electrocatalytic activities of metal complexes of bis-porphyrins and -corroles has been summarized in this review article. This article shows that despite the (still) somewhat difficult synthetic access to these molecules, their extremely exciting properties do make a strong case for pursuing research on these classes of compounds.  相似文献   
72.
We report the existence of broad and weakly asymmetric features in the high-energy (G) Raman modes of freely suspended metallic carbon nanotubes of defined chiral index. A significant variation in peak width (from 12 cm(-1) to 110 cm(-1)) is observed as a function of the nanotube's chiral structure. When the nanotubes are electrostatically gated, the peak widths decrease. The broadness of the Raman features is understood as the consequence of coupling of the phonon to electron-hole pairs, the strength of which varies with the nanotube chiral index and the position of the Fermi energy.  相似文献   
73.
Slow light is demonstrated in liquid phase in an aqueous bacteriorhodopsin (bR) solution at room temperature. Group velocity as low as 3 m/s (all the way to c) is achieved by exploiting the photoisomerization property of bR for coherent population oscillations. Slow light in the liquid phase offers several advantages over solids or vapors for a variety of applications: (i) shorter lifetimes of the M state facilitate slow light at higher modulation frequencies, (ii) convection makes it possible to obtain large signal delays even at high input powers, and (iii) solution concentration is another convenient parameter to vary the signal delay over a wide range.  相似文献   
74.
75.
Carbene-based radicals are important for both fundamental and applied chemical research. Herein, extensive electrochemical investigations of nine different 1,2,3-triazolylidene selenium adducts are reported. It is found that the half-wave potentials of the first reduction of the selones correlate with their calculated LUMO levels and the LUMO levels of the corresponding triazolylidene-based mesoionic carbenes (MICs). Furthermore, unexpected quasi-reversibility of the reduction of two triazoline selones, exhibiting comparable reduction potentials, was discovered. Through UV/Vis/NIR and EPR spectroelectrochemical investigations supported by DFT calculations, the radical anion was unambiguously assigned to be triazoline centered. This electrochemical behavior was transferred to a triazolylidene-type MIC-gold phenyl complex resulting in a MIC-radical coordinated AuI species. Apart from UV-Vis-NIR and EPR spectroelectrochemical investigations of the reduction, the reduced gold-coordinated MIC radical complex was also formed in situ in the bulk through chemical reduction. This is the first report of a monodentate triazolylidene-based MIC ligand that can be reduced to its anion radical in a metal complex. The results presented here provide design principles for stabilizing radicals based on MICs.  相似文献   
76.
An NMR‐based approach for rapid characterization of translational diffusion of molecules has been developed. Unlike the conventional method of acquiring a series of 2D 13C and 1H spectra, the proposed approach involves a single 2D NMR spectrum, which can be acquired in minutes. Using this method, it was possible to detect the presence of intermediate oligomeric species of diphenylalanine in solution during the process of its self‐assembly to form nanotubular structures.  相似文献   
77.
A highly efficient oxidative carbocyclization–carbonylation reaction cascade of allenynes and enallenes has been developed using a PdII salt in low catalytic amounts under ambient temperature and pressure (1 atm of carbon monoxide). The use of DMSO as an additive was found to be important for an efficient reaction. A wide range of alcohols as trapping reagents were used to give the corresponding esters in good yields.  相似文献   
78.
We report for the first time sinapic acid (SA) sensing based on nanocomposite comprising electrochemically tuned gold nanoparticles (EAuNPs) and solvothermally reduced graphene oxide (rGO). The synthesized EAuNPs, rGO, and EAuNPs‐rGO nanocomposite were characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), particle size analysis, and Raman spectroscopy. A proof‐of‐concept electrochemical sensor for SA was developed based on synthesized EAuNPs‐rGO nanocomposite, which was characterized by electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The developed sensor detected SA with a linear dynamic range (LDR) between 20 μM and 200 μM and detection limit (DL) of 33.43 (±0.21) nM (RSD<3.32 %). To show the useful purpose of the sensor probe in clinical applications, SA was detected in human urine samples, which showed the percentage recovery between 82.6 % and 92.8 %. Interferences due to various molecules such as L‐cystine, glycine, alanine, serum albumin, uric acid, citric acid, ascorbic acid, and urea were tested. Long‐term stability of the sensor probe was examined, which was found to be stable up to 6 weeks. The sensor fabricated using EAuNPs‐rGO nanocomposite has many attractive features such as; simplicity, rapidity, and label‐free detection; hence, it could be a method of choice for SA detection in various matrices.  相似文献   
79.
Understanding the conformational ensembles of intrinsically disordered proteins and peptides (IDPs) in their various biological environments is essential for understanding their mechanisms and functional roles in the proteome, leading to a greater knowledge of, and potential treatments for, a broad range of diseases. To determine whether molecular simulation is able to generate accurate conformational ensembles of IDPs, we explore the structural landscape of the PLP peptide (an intrinsically disordered region of the proteolipid membrane protein) in aqueous and membrane-mimicking solvents, using replica exchange with solute scaling (REST2), and examine the ability of four force fields (ff14SB, ff14IDPSFF, CHARMM36 and CHARMM36m) to reproduce literature circular dichroism (CD) data. Results from variable temperature (VT) 1H and Rotating frame Overhauser Effect SpectroscopY (ROESY) nuclear magnetic resonance (NMR) experiments are also presented and are consistent with the structural observations obtained from the simulations and CD. We also apply the optimum simulation protocol to TP2 and ONEG (a cell-penetrating peptide (CPP) and a negative control peptide, respectively) to gain insight into the structural differences that may account for the observed difference in their membrane-penetrating abilities. Of the tested force fields, we find that CHARMM36 and CHARMM36m are best suited to the study of IDPs, and accurately predict a disordered to helical conformational transition of the PLP peptide accompanying the change from aqueous to membrane-mimicking solvents. We also identify an α-helical structure of TP2 in the membrane-mimicking solvents and provide a discussion of the mechanistic implications of this observation with reference to the previous literature on the peptide. From these results, we recommend the use of CHARMM36m with the REST2 protocol for the study of environment-specific IDP conformations. We believe that the simulation protocol will allow the study of a broad range of IDPs that undergo conformational transitions in different biological environments.

A protocol for simulating intrinsically disordered peptides in aqueous and hydrophobic solvents is proposed. Results from four force fields are compared with experiment. CHARMM36m performs the best for the simulated IDPs in all environments.  相似文献   
80.
The broadening as well as shift in the photoluminescence spectra of K2[Pt(CN)4] · 3 H2O, Ba[Pt(CN)4] · 4 H2O, CdS:Te and Ru(C15H11N3)2I2 · H2O crystals take place with their grinding. The original vibronic peaks at 632 and 628 nm of CdS:Te and Ru(C15H11N3)2I2 · H2O crystals, respectively, disappear with the grinding. A new vibronic peak at 650 nm appears with grinding of Ru(C15H11N3)2I2 · H2O crystals. It is concluded that the change in the photoluminescence spectra is attributed to the creation of dislocations during the process of grinding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号