首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   7篇
化学   132篇
力学   1篇
数学   15篇
物理学   10篇
  2023年   3篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2016年   4篇
  2015年   2篇
  2014年   3篇
  2012年   10篇
  2011年   3篇
  2010年   4篇
  2008年   8篇
  2007年   8篇
  2006年   10篇
  2005年   7篇
  2004年   3篇
  2002年   4篇
  2000年   3篇
  1998年   2篇
  1992年   2篇
  1989年   3篇
  1988年   3篇
  1983年   2篇
  1982年   2篇
  1977年   4篇
  1973年   3篇
  1942年   2篇
  1926年   1篇
  1925年   1篇
  1922年   1篇
  1913年   1篇
  1911年   2篇
  1909年   1篇
  1906年   1篇
  1905年   2篇
  1903年   3篇
  1900年   5篇
  1898年   4篇
  1896年   1篇
  1895年   2篇
  1887年   2篇
  1885年   2篇
  1880年   1篇
  1879年   2篇
  1875年   1篇
  1871年   1篇
  1869年   1篇
  1867年   3篇
  1866年   1篇
  1865年   1篇
  1864年   1篇
排序方式: 共有158条查询结果,搜索用时 0 毫秒
71.
72.
73.
74.
Ion association of the ionic liquid [bmim][Cl] in acetonitrile and in water was studied by dielectric spectroscopy for salt concentrations c ≤ 1.3 M at 298.15 K and by measurement of molar electrical conductivities, Λ, of dilute solutions (c ≤ 0.006 M) in the temperature range 273.15 ? T/K ≤ 313.15. Whilst acetonitrile solutions of [bmim][Cl] exhibit moderate ion pairing, with an association constant of K°(A) ≈ 60 M(-1) and increasing with temperature, [bmim][Cl] is only weakly associated in water (K°(A) ≈ 6 M(-1)) and ion pairing decreases with rising temperature. Only contact ion pairs were detected in both solvents. Standard-state enthalpy, entropy and heat capacity changes of ion association were derived, as well as the activation enthalpy of charge transport and the limiting conductivity of the cation, λ(∞)?([bmim](+)). These data, in conjunction with effective solvation numbers obtained from the dielectric spectra, suggest that the solvation of [bmim](+) is much weaker in water than in acetonitrile.  相似文献   
75.
This work reports for the first time the computational, frequency-dependent dielectric spectrum of the polarizable molecular ionic liquid 1-ethyl-3-methylimidazolium triflate as well as its experimental analogue. In the frequency range from 500 MHz up to 20 GHz the agreement between the computational and the experimental spectrum is quantitative. For higher frequencies up to 10 THz the agreement is still remarkably good. The experimental asymptotic limit ε(∞) is 2.3. The difference in the computational value of 1.9 comes solely from the neglect of polarizability of the hydrogen atoms. For reasons of efficiency the simulations are based on the Lagrangian algorithm for the Drude oscillator model which cannot handle polarizable hydrogens. In the computational analysis the complete spectrum of the generalized dielectric constant ∑(0)*(ν) is splitted into its translational and non-translational components, called dielectric conductivity ?(0)(ν) and dielectric permittivity ε(ν). For 1-ethyl-3-methylimidazolium triflate both components contribute with equal weight and overlap in the complete frequency range. The inclusion of polarization forces, however, is quite different for the two components: the collective non-translational dynamics is accelerated and hence the dielectric permittivity is shifted to higher frequencies. The low frequency region of the dielectric conductivity is also affected while its high frequency part remains almost unchanged. Inductive effects are not only visible at high frequencies but also contribute in the sub-GHz region. The computational peak found in this region correlates with the experimental OKE-spectrum. It may be interpreted as the correlation between the induced dipole moment of the cations and the local electric field exerted by the anionic cage.  相似文献   
76.
The interplay of metal ions with polysaccharides is important for the immune recognition in the lung. Due to the localization of beryllium associated diseases to the lung, it is likely that beryllium carbohydrate complexes play a vital role for the development of berylliosis. Herein, we present a detailed study on the interaction of Be2+ ions with fructose and glucose as well as simpler biomimetic ligands, which emulate binding motives of saccharides. Through NMR and IR spectroscopy as well as single-crystal X-ray diffraction, complemented by competition reactions we were able to determine a distinctive trend in the binding affinity of these ligands. This suggests that under physiological conditions beryllium ions are only bound irreversibly in glycoproteins or polysaccharides if a quasi ideal tetrahedral environment and κ4-coordination is provided by the respective biomolecule. Furthermore, Lewis acid induced conversions of the ligands and an extreme increase in the Brønstedt acidity of the present OH-groups imply that upon enclosure of Be2+, alterations may be induced by the metal ion in glycoproteins or polysaccharides. In addition the frequent formation of Be-O-heterocycles indicates that multinuclear beryllium compounds might be the actual trigger of berylliosis. This investigation on beryllium coordination chemistry was supplemented by binding studies of selected biomimetic ligands with Al3+, Zn2+, Mg2+, and Li+, which revealed that none of these beryllium related ions was tetrahedrally coordinated under the give conditions. Therefore, studies on the metabolization of beryllium compounds cannot be performed with other hard cations as a substitute for the hazardous Be2+.  相似文献   
77.
78.
79.
80.
A dedicated nonlinear oscillator model able to reproduce the pulse shape, refractory time, and phase sensitivity of the action potential of a natural pacemaker of the heart is developed. The phase space of the oscillator contains a stable node, a hyperbolic saddle, and an unstable focus. The model reproduces several phenomena well known in cardiology, such as certain properties of the sinus rhythm and heart block. In particular, the model reproduces the decrease of heart rate variability with an increase in sympathetic activity. A sinus pause occurs in the model due to a single, well-timed, external pulse just as it occurs in the heart, for example due to a single supraventricular ectopy. Several ways by which the oscillations cease in the system are obtained (models of the asystole). The model simulates properly the way vagal activity modulates the heart rate and reproduces the vagal paradox. Two such oscillators, coupled unidirectionally and asymmetrically, allow us to reproduce the properties of heart rate variability obtained from patients with different kinds of heart block including sino-atrial blocks of different degree and a complete AV block (third degree). Finally, we demonstrate the possibility of introducing into the model a spatial dimension that creates exciting possibilities of simulating in the future the SA the AV nodes and the atrium including their true anatomical structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号