首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4529篇
  免费   128篇
  国内免费   20篇
化学   2932篇
晶体学   23篇
力学   138篇
数学   805篇
物理学   779篇
  2023年   29篇
  2022年   65篇
  2021年   85篇
  2020年   79篇
  2019年   89篇
  2018年   72篇
  2017年   48篇
  2016年   117篇
  2015年   111篇
  2014年   120篇
  2013年   180篇
  2012年   239篇
  2011年   328篇
  2010年   188篇
  2009年   192篇
  2008年   242篇
  2007年   232篇
  2006年   232篇
  2005年   182篇
  2004年   156篇
  2003年   132篇
  2002年   140篇
  2001年   58篇
  2000年   59篇
  1999年   43篇
  1998年   29篇
  1997年   38篇
  1996年   67篇
  1995年   40篇
  1994年   51篇
  1993年   37篇
  1992年   41篇
  1991年   31篇
  1990年   39篇
  1989年   27篇
  1988年   37篇
  1987年   31篇
  1986年   33篇
  1985年   58篇
  1984年   60篇
  1983年   47篇
  1982年   39篇
  1981年   44篇
  1980年   50篇
  1979年   56篇
  1978年   31篇
  1977年   24篇
  1976年   31篇
  1974年   19篇
  1973年   19篇
排序方式: 共有4677条查询结果,搜索用时 15 毫秒
41.
M(HL)(H2O)n complexes have been obtained by the electrochemical reaction of Fe, Co, Ni, Cu, Zn and Cd anodes with the potentially pentadentate and trianionic asymmetrical Schiff base 3‐aza‐N‐{2‐[1‐aza‐2‐(5‐nitro‐2‐hydroxylphenyl)‐vinyl]phenyl}‐4‐(5‐nitro‐2‐hydroxyphenyl)but‐3‐enamide (H3L), containing a hard amido donor atom. The complexes have been characterized by elemental analysis, mass spectrometry, IR and 1H NMR spectroscopies, magnetic measurements and molar conductivities. Co(HL)(H2O) ( 2 ) has been found to rearrange in DMF solution into a crystallographically solved octahedral complex, CoL1(H2O)2 ( 7 ) [where H2L1 is the symmetrical Schiff base ligand N,N′‐(1,2‐phenylene)‐bis(5‐nitro‐3‐hydroxysalicylidenimine)]. A hydrolysis mechanism is discussed to explain this rearrangement.  相似文献   
42.
Polymer-supported O-alkylisoureas were prepared by reaction of an alcohol with a polymer-supported carbodiimide under copper(II) catalysis. These reagents were used to transform carboxylic acids into the corresponding methyl, benzyl, allyl, and p-nitrobenzyl esters in a highly chemoselective manner in high yields and in very high purity after simple resin filtration and solvent evaporation. The reactions could be carried out using both conventional or microwave heating, with reaction times as short as 3-5 min in the latter case, without compromising yield, purity, or chemoselectivity. Unfortunately, the corresponding solid-supported tert-butyl isoureas could not be prepared.  相似文献   
43.
Analytic expressions are given for integrals of the Coulomb Green function with Slater type atomic orbitals. The results involve hypergeometric functions.Supported by the National Institutes of Health, Grant No. GM23223.  相似文献   
44.
Summary The electrochemical behaviour of a series of cationic platinum(II) isocyanide complexes has been studied in acetonitrile. All the tested compounds are oxidized at a platinum electrode via a two-electron process and reduced at a platinum or mercury electrode via two successive one-electron steps. The anodic step involves the formation of platinum(IV) complexes. The main reduction product formed in correspondence to the first cathodic process is a stable dimer platinum(I) containing bridging isocyanide ligands. Platinum(0) species are formed in the subsequent reduction step.  相似文献   
45.
The kinetics of the process AuCl3(nu) + Cl→ AuCl 4 + nu (nu = one of a number of five-membered N-donor heterocycles covering a wide range of basicity, namely: oxazole, 2,4,5-trimethyloxazole, thiazole, 5-methylthiazole, 4-methylthiazole, 4,5-dimethylthiazole, 2,4-dimethylthiazole, 2,4,5-trimethylthiazole, imidazole and 2-methylimidazole) have been studied in methanol at 25 °C. The reactions follow the usual two-term rate law, rate = (k 1 + k 2[Cl])[complex], observed in a square-planar substitution associative-mechanism. The second-order rate constants, k 2, indicate that the discriminating ability of Au(III) in these complexes is good and markedly influenced by the nature of the leaving group. A linear-free-energy relationship, logk 2 = 0.53pK a + constant, is observed between the rate constant and the basicity of the leaving group for its replacement by chloride. The results are compared with data from the literature regarding a series of complexes of the type AuCl3(py) (py = one of a number of pyridines) reacting with the Cl anion under the same experimental conditions. The reactivity depends not only upon ligand basicity but also upon the nature of the ligand in the order: pyridines> five-membered heterocycles. Steric factor due to the presence of a single methyl group ortho to the sp2 nitrogen atom in the ring has no influence on the rate of substitution while, surprisingly, when there are two ortho methyl groups a remarkable steric retardation effect is observable. The results are discussed in terms of reaction-profile in the associative-substitution reaction and bonding interactions in the ground and transition states.  相似文献   
46.
Peptide metallation with Cu2+ was explored in the negative ESI mode using an ion trap mass spectrometer. Under these conditions, the [(M-3H) + CuII]- species formed were investigated under low-energy collision-induced dissociation conditions. MS2 experiments indicate a very different behavior of CuII metallated complexes compared with [M-H]- species. CuII induces an easy loss of CO2 and specific side-chain cleavages (by radical losses) at the C-terminal residue, as observed previously by prompt 'in source' dissociation experiments. The loss of CO2 yields an unstable carbylide that leads to further dissociations involving the migration of a proton or a hydrogen radical (through the reduction of CuII). Multistage MS3 experiments were carried out to rationalize this behavior. Fragmentation pathways are proposed in order to explain the product ions observed. The side-chain radical loss at the C-terminus was demonstrated to be a consecutive process. Finally, evidence is provided that the specific side-chain cleavages can be used for the differentiation of Leu/Ile and Gln/Lys residues when they are located at the C-terminus. The existence of a zwitterionic form in the case of the anionic YGGFK-CuII complex is proposed.  相似文献   
47.
A liquid chromatographic/mass spectrometric assay with atmospheric pressure chemical ionization (LC/APCI-MS) is presented for fast and reliable screening and identification and also for precise and sensitive quantification in plasma of the 23 benzodiazepines alprazolam, bromazepam, brotizolam, camazepam, chlordiazepoxide, clobazam, clonazepam, diazepam, flunitrazepam, flurazepam, desalkylflurazepam, lorazepam, lormetazepam, medazepam, metaclazepam, midazolam, nitrazepam, nordazepam, oxazepam, prazepam, temazepam and tetrazepam, triazolam, their antagonist flumazenil and the benzodiazepine BZ1 (omega 1) receptor agonists zaleplone, zolpidem and zopiclone. It allows confirmation of the diagnosis of an overdose situation and monitoring of psychiatric patients' compliance. The analytes were isolated from plasma using liquid-liquid extraction and were separated on a Merck LiChroCART column with Superspher 60 RP Select B as the stationary phase. Gradient elution was performed using aqueous ammonium formate and acetonitrile. After screening and identification in the scan mode using the authors' LC/MS library, the analytes were quantified in the selected-ion monitoring mode. The quantification assay was fully validated. It was found to be selective proved to be linear from sub-therapeutic to over therapeutic concentrations for all analytes, except bromazepam. The corresponding reference levels the assay's accuracy and precision data for all studied substances are listed. The accuracy and precision data were within the required limits with the exception of those for bromazepam. The analytes were stable in frozen plasma for at least 1 month. The validated assay was successfully applied to several authentic plasma samples from patients treated or intoxicated with various benzodiazepines or with zaleplone, zolpidem or zopiclone. It has proven to be appropriate for the isolation, separation, screening, identification and quantification of the drugs mentioned above in plasma for clinical toxicology, e.g. in cases of poisoning, and forensic toxicology, e.g. in cases of driving under the influence of drugs.  相似文献   
48.
The model BAGS (Boxmodel for Aerosol and Gasphase Simulations) has been developed. It is composed of two major modules: the first one describes the system of the chemical reactions in the gaseous phase, the second one calculates the aerosol chemical composition and the dimensional distribution of the particles. The boxmodel has been developed with the introduction of new chemical and physical processes, not previously included, in particular the formation of Secondary Organic Aerosol. The other implemented processes are a module for the dynamic of the particle population, nucleation, coagulation and dry deposition. The last phase of the work has been a check of the BAGS capabilities by a series of tests, that have permitted to compare it with other models (MAPS and MADM). The tests in particular have concerned the aerosol water content prediction, the photochemistry, the condensation of the inorganic compounds and the formation of Secondary Organic Aerosol.  相似文献   
49.
Hydroboration of β-acetylenic alcohols followed by NaOH/H2O2 oxidation leads to hemiacetals of γ-aldols which are easily dehydrated to 2,3-dihydrofuran compounds. The reaction gives good yields with hindered alcohols and its stereochemistry may be controlled during the organometallic synthesis of the starting alcohol.  相似文献   
50.
A large‐scale synthetic route to a variety of phosphaformamidines and phosphaformamidinates, a type of derivative that was not accessible by the methods previously known for preparing phosphaamidines and phosphaamidinates, is reported. Thermally stable ethyl N‐arylformimidates 1 (ArN?CH(OEt), Ar=2,4,6‐(Me)3Ph or 2,6‐(iPr)2Ph) readily reacted with lithium dialkyl‐ and diarylphosphanides to afford the corresponding N‐aryl phosphaformamidines in 80 and 60 % yield, respectively, whereas with lithium (aryl)(silyl)phosphanide, the N‐aryl‐N‐silylphosphaformamidine (60 % yield) was obtained. Addition of primary lithium arylphosphanides to 1 followed by addition of a stoichiometric amount of nBuLi gave rise to the respective phosphaformamidinates (70–88 % yield). Methanolysis of the products afforded the N‐aryl‐N‐hydrogenophosphaformamidines (90–95 % yield). The solid‐state structure of one of the phosphaformamidinates is also presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号