首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   189篇
  免费   6篇
化学   138篇
力学   2篇
数学   22篇
物理学   33篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   7篇
  2015年   3篇
  2014年   7篇
  2013年   11篇
  2012年   9篇
  2011年   13篇
  2010年   12篇
  2009年   4篇
  2008年   20篇
  2007年   11篇
  2006年   10篇
  2005年   4篇
  2004年   7篇
  2003年   8篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   4篇
  1996年   4篇
  1995年   4篇
  1994年   1篇
  1993年   4篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1966年   2篇
  1937年   2篇
  1936年   1篇
排序方式: 共有195条查询结果,搜索用时 15 毫秒
1.
Mathematical Programming - Given two matroids $$\mathcal {M}_{1} = (E, \mathcal {B}_{1})$$ and $$\mathcal {M}_{2} = (E, \mathcal {B}_{2})$$ on a common ground set E with base sets $$\mathcal...  相似文献   
2.
Dihydrothiinone 9a undergoes photocycloaddition regioselectively to all three C?C bonds of penta‐1,2,4‐triene ( 10 ), the relative stabilities of the biradical intermediates determining the product distribution. In contrast, cyclohexenone 9b and dihydropyranone 9c afford more complex mixtures of bicyclo[4.2.0]octanones, which also turn out to be less stable on chromatographic workup, reflecting the higher strain due to the shorter bond lengths (C? O and C? C vs. C? S) in the six‐membered rings, respectively.  相似文献   
3.
A series of nonionic amphiphiles derived from polyglycerol dendrons were studied for their ability to solubilize and isolate single-walled carbon nanotubes. The amphiphiles possessed differently sized polar head groups, hydrophobic tail units, and various aromatic and non-aromatic groups between the head and tail groups. Absorbance analysis revealed that amphiphiles with anchor groups derived from pyrene were far inferior to those that possessed simple linear aliphatic tail groups. Absorbance and near-infrared fluorescence analyses revealed a weak dependence on the dendron size of the head group, but a strong positive trend in suspended nanotube density and fluorescence intensity for amphiphiles with longer tail units. Variations in the moieties linking the head and tail groups led to a range of effects on the suspensions, with linkers imparting flexibility and a bent shape that gave improved performance overall. This was illustrated most dramatically by a pair of benzamide-containing amphiphiles, the para isomer of which showed evidence in the fluorescence data of increased nanotube aggregate formation when compared with the meta isomer. In addition, statistical AFM was used to illustrate more directly the microscopic differences between amphiphiles that were effective at nanotube bundle disruption and those that were not.  相似文献   
4.
5.
Within a mixture of proteins, minor polymorphic components are difficult to identify using a conventional proteomic approach. Their identification generally requires multi-dimensional separation steps, before or after proteolytic cleavage, followed by sequence analysis of the proteolytic products. In this study, we investigated the potential of tandem mass spectrometry for protein characterization by identifying the delta-beta hybrid human hemoglobin variant Lepore-Boston-Washington using electrospray ionization tandem mass spectrometry. Hemoglobin Lepore-Boston-Washington occurs mainly in heterozygotes, where it comprises approximately 10% of the total non-alpha-chains, the dominant non-alpha-chain being the normal beta (approximately 90%). Furthermore, Hemoglobin Lepore-Boston-Washington has an average molecular mass (15,865.23 Da) that is only 2 Da lower than that of the normal beta-chain (15,867.24 Da). Consequently, it cannot be resolved from the normal beta-chain by mass spectrometry. Here we show how Hemoglobin Lepore-Boston-Washington was identified directly from the diluted blood of a heterozygote by analyzing the product ions from the Lepore-Boston-Washington and normal beta-chain ions without prior separation of the individual chains. This study shows the potential of the tandem mass spectrometry for identifying a minor component in an unseparated mixture of proteins.  相似文献   
6.
7.
In this paper we present the structural characterization of a five-component food-grade microemulsion containing Tween 80, R(+)-limonene, ethanol, glycerol, and water. Our main approach to investigating the microstructure of dense microemulsions, and how it can be influenced by the various components, was to employ small-angle neutron scattering and the new evaluation technique for dense, interacting systems, the Generalized Indirect Fourier Transformation. We started our investigation with the impact of glycerol and ethanol on Tween 80 micelles in water. We found that glycerol increases the aggregation number and withdraws the hydrating agents from the headgroup region of the surfactant, resulting in a higher packing density of molecules in a micelle at slightly increasing size. The same trend holds when the micelles are oil swollen and/or ethanol is present. Ethanol, on the other hand, redistributes mainly between water and the interface-headgroup region of the surfactant. Part of it replaces surfactant molecules in the micelles, which increases the available interface and results in a higher number of micelles with shrinking size. The same trend holds when the micelles are oil swollen and/or glycerol is present in the aqueous phase. We also investigated samples along the dilution of a mixture of surfactant and oil phase (R(+)-limonene and ethanol), which can be diluted with aqueous phase (mixture of water and glycerol) without the occurrence of phase separation. In some samples of this dilution most probably bicontinuous structures are present. To elucidate this point, we also employed dynamic light scattering, viscosity, and conductivity measurements.  相似文献   
8.
9.
The well-known method for the determination of selenium(IV), which is based on the cathodic stripping voltammetry of copper(I) selenide, has been adapted for application at the thin-film mercury electrode on glassy carbon (TFME). Insufficient reproducibility and sensitivity have been overcome by using a 0.1 mol/L HClO4 electrolyte solution containing 0.02 mol/L thiocyanate ions. Thiocyanate ions have been found to increase the peak height of the selenium response and shift it to more positive potentials. This behaviour is explained by an adsorption of SCN at the interface glassy carbon/Cu2Se and its action as an electron transfer catalyst between glassy carbon and copper(I) selenide. A 3σ-detection limit of 75 ng/L Se(IV) has been achieved. The relative standard deviation is 5.2% at 5 μg/L selenium(IV). The influence of cadmium(II), arsenic(III), zinc(II), iron(III) and lead(II) ions on the selenium response has been studied. In case of lead ions, a new signal occurred at more negative potentials than the reduction of Cu2Se. This signal, which is probably due to the reduction of PbSe, can also be used for the determination of selenium(IV). Received: 13 November 1996 / Revised: 19 December 1996 / Accepted: 24 December 1996  相似文献   
10.
While most nanoproteomics approaches for the analysis of low-input samples are based on bottom-up proteomics workflows, top-down approaches enabling proteoform characterization are still underrepresented. Using mammalian cell proteomes, we established a facile one-pot sample preparation protocol based on protein aggregation on magnetic beads and intact proteoform elution using 40 % formic acid. Performed on a digital microfluidics device, the workflow enabled sensitive analyses of single Caenorhabditis elegans nematodes, thereby increasing the number of proteoform identifications compared to in-tube sample preparation by 46 %. Label-free quantification of single nematodes grown under different conditions allowed to identify changes in the abundance of proteoforms not distinguishable by bottom-up proteomics. The presented workflow will facilitate proteoform-directed analysis on samples of limited availability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号