The Pracaxi oil—(Pentaclethra macroloba) contains high concentrations of fatty acids with emollient action that contribute to skin hydration. The use of this oil is supported by the utilization of natural resources thus enabling regional development and social contribution. The objective of this study was to characterize the P. macroloba oil by thermogravimetry (TG, DTG, and DTA), gas chromatography, Fourier transform infrared spectroscopy (FT-IR), and oxidation stability—Rancimat, aiming at the quality control of plant raw material. Three samples of crude oil sold by Amazon Oil Industry (Ananindeua, Pará, Brazil) were studied. The analysis of these oil samples showed different fatty acids, especially the behenic, oleic, linoleic, and lignoceric acids totalizing approximately 96 % of the grease composition and in smaller percentage arachidic, lauric, myristic, palmitic, and linolenic acids were found. The major acids have wide medicinal use. According to the TG/DTG curve, thermal stability was observed up to 220 °C, indicating a greater mass loss related to the dehydration and elimination of volatile substances. The thermal decomposition process occurred in the range of 430–450° C according to the DTG curve. The absorption spectrum in the infrared region (FT-IR) showed well-defined bands confirming the presence of functional groups present in the oil. Tests in a Rancimat have shown an induction period between 8 and 10 h demonstrating that the samples are in agreement with the standards required by ANP No. 14/2012 which requires at least 6 h of testing. 相似文献
In the research of new compounds with multifunctional applications, heterobinuclear palladium (II) complexes based on organometallic dithiocarbazates (DTCZs) have been isolated. The organometallic DTCZ ligands of the general formula [{(η5-C5H4)-CH=NNHC(S)SCH3}]MLn [MLn = Re (CO)3 ( 2a ); Mn (CO)3 ( 2b ); FeCp ( 2c )] were prepared by the reaction between formyl organometallic precursors ( 1a−c ) with S-methyldithiocarbazate. Subsequently, a two-step reaction of 2a−c with: (i) K2[PdCl4] and (ii) PPh3 yielded heterobinuclear complexes [Pd{MLn(η5-C5H4)-CH=NNHC(S)SCH3}–(Cl)(PPh3)] [MLn = Re (CO)3 ( 3a ); Mn (CO)3 ( 3b ); FeCp ( 3c )]. All compounds were characterized by conventional spectroscopic techniques (infrared spectroscopy, nuclear magnetic resonance spectroscopy, mass spectrometry and elemental analysis). In addition, the molecular structures of 2a , 2c and 3c were determined by single-crystal X-ray diffraction. The new palladium (II) complexes ( 3a−c ) were evaluated as antiproliferative agents against non-small cell lung cancer cells (H1299 cells). Complexes 3a and 3b containing cyrhetrenyl- and cymantrenyl-DTCZ ligands, respectively, were more active than their ferrocenyl analogue 3c . The activity was associated with the electron-withdrawing properties of the (η5-C5H4)M (CO)3 moieties and their better lipophilicity than that of the ferrocenyl analogue. In addition, we studied the capacity of metalloligands ( 2a−c ) and palladium (II) complexes ( 3a−c ) to remove methylene blue in water under UV–visible light irradiation. The results established that the complexes showed moderate efficiency and were less active than their corresponding free ligands. 相似文献
The methanolic extract of the bark of the medicinal plant Qualea parviflora (Vochysiaceae) contains new nor-seco-triterpene and pentacyclic triterpenoids. They were separated in a preparative scale using droplet counter-current chromatography. The optimum solvent used was composed of a mixture of CHCl3/MeOH/H2O (43:37:20, v/v) in the descending mode and led to a successful separation of the new compound 28-nor-17, 22-seco-2α, 3β, 19, 22, 23-pentahydroxy-Δ12-oleanane, besides the known triterpenoids bellericagenin B, bellericaside B and arjunglucoside I . Identification was performed by ESI-MS, 1H NMR and 13C NMR analyses. 相似文献
Many studies are focused on the development of materials for converting carbon dioxide into multicarbon oxygenates such as methanol and ethanol, because of their higher energy density and wider applicability. In this work, TiO2 nanotubes (NT/TiO2) were modified with CuxO nanoparticles in order to investigate the contribution of different ratio of Cu2O/CuO and its distribution over NT/TiO2 for CO2 photoelectro-conversion to methanol. The photoelectrodes were built by anodization process to obtain NT/TiO2 layer, and the decoration with CuxO hybrid system was carried out by electrodeposition process, using Na2SO4 or acid lactic as electrolyte, followed by annealing at different temperatures. X-ray photoelectron spectroscopy analysis revealed the predominance of Cu+1 and Cu+2 at 150 °C and 300 °C, respectively. X-ray diffraction and scanning electron microscopy indicated that under lactic acid solution, the oxide nanoparticles exhibited small size, cubic shape, and uniform distribution on the nanotube wall. While under Na2SO4 electrolyte, large nanoparticles with two different morphologies, octahedral and cubic shapes, were deposited on the top of the nanotubes. All modified electrodes converted CO2 in methanol in different quantities, identified by gas chromatograph. However, the NT/TiO2 modified with CuO/Cu2O (80:20) nanoparticles using lactic acid as electrolyte showed better performance in the CO2 reduction to methanol (0.11 mmol L−1) in relation to the other electrodes. In all cases, a blend among the structures and nanoparticle morphologies were achieved and essential to create new site of reactions what improved the use of light irradiation, minimization of charge recombination rate and promoted high selectivity of products.
This paper reports the thermal characterization of polyacrylamide-co-methylcellulose hydrogels and the constituent monomers (acrylamide and methylcellulose). Polymeric materials can be used
to produce hydrogels, which can be natural, synthetic, or a mixture. The hydrogels described here were obtained by free radical
polymerization, in the presence of N,N′-methylene-bis-acrylamide as a cross-linker agent. Four acrylamide concentrations were used for the synthesis of hydrogels:
3.6, 7.2, 14.7, and 21.7% (w/v). The materials so obtained were analyzed by TG, DTG, DSC, and FT-IR. The TG curves of acrylamide
and methylcellulose showed three mass loss events. In DSC curves, the acrylamide exhibited one melting peak at 84.5 °C, and
methylcellulose indicated one exothermic event. Nevertheless, acrylamide was considered more stable than methylcellulose.
The TG curves of the hydrogels exhibited three mass loss events, and on the DSC curves, three endothermic events were observed.
It was verified that the different acrylamide proportions influenced the thermic behavior of hydrogels, and that the authors
considered the 7.2% hydrogel a promising drug carrier system. The absorption bands were well defined, confirming the presence
of the functional groups in the samples. 相似文献
The biological oxygen demand (BOD) may be the most used test to assess the amount of pollutant organic matter in water; however, it is time and labor consuming, and is done ex-situ. A BOD biosensor based on the microbial fuel cell principle was tested for online and in situ monitoring of biodegradable organic content of domestic wastewater. A stable current density of 282±23mA/m(2) was obtained with domestic wastewater containing a BOD(5) of 317±15mg O(2)/L at 22±2°C, 1.53±0.04mS/cm and pH 6.9±0.1. The current density showed a linear relationship with BOD(5) concentration ranging from 17±0.5mg O(2)/L to 78±7.6mg O(2)/L. The current generation from the BOD biosensor was dependent on the measurement conditions such as temperature, conductivity, and pH. Thus, a correction factor should be applied to measurements done under different environmental conditions from the ones used in the calibration. These results provide useful information for the development of a biosensor for real-time in situ monitoring of wastewater quality. 相似文献
In this paper the synthesis, characterization and photoluminescent behavior of the [RE(DBM)3L2] complexes (RE=Gd and Eu) with a variety of sulfoxide ligands; L=benzyl sulfoxide (DBSO), methyl sulfoxide (DMSO), phenyl sulfoxide (DPSO) and p-tolyl sulfoxide (PTSO) have been investigated in solid state. The emission spectra of the Eu(3+)-beta-diketonate complexes show characteristics narrow bands arising from the 5D0-->7F(J) (J=0-4) transitions, which are split according to the selection rule for C(n), C(nv) or C(s) site symmetries. The experimental Judd-Ofelt intensity parameters (Omega2 and Omega4), radiative (A(rad)) and non-radiative (A(nrad)) decay rates, and R02 for the europium complexes have been determined and compared. The highest value of Omega2 (61.9x10(-20)cm2) was obtained to the complex with PTSO ligand, indicating that Eu3+ ion is in the highly polarizable chemical environment. The higher values of the experimental quantum yield (q) and emission quantum efficiency of the emitter 5D0 level (eta) for the Eu-complexes with DMSO, DBSO and PTSO sulfoxides suggest that these complexes are promising Light Conversion Molecular Devices (LCMDs). The lower value of quantum yield (q=1%), for the hydrated complex [Eu(DBM)3H2O], indicates that the luminescence quenching occurs via multiphonon relaxation by coupling with the OH-oscillators from water molecule coordinated to rare earth ion. The pure red emission of the Eu-complexes has been confirmed by (x, y) color coordinates. 相似文献
Cardiovascular diseases (CVD) are the deadliest noncommunicable disease worldwide. Hypertension is the most prevalent risk factor for the development of CVD. Although there is a wide range of antihypertensive drugs, there still remains a lack of blood pressure control options for hypertensive patients. Additionally, natural products remain crucial to the design of new drugs. The natural product 7-hydroxycoumarin (7-HC) exhibits pharmacological properties linked to antihypertensive mechanisms of action. This study aimed to evaluate the vascular effects of 7-HC in an experimental model of essential hypertension. The isometric tension measurements assessed the relaxant effect induced by 7-HC (0.001 μM–300 μM) in superior mesenteric arteries isolated from hypertensive rats (SHR, 200–300 g). Our results suggest that the relaxant effect induced by 7-HC rely on K+-channels (KATP, BKCa, and, to a lesser extent, Kv) activation and also on Ca2+ influx from sarcolemma and sarcoplasmic reticulum mobilization (inositol 1,4,5-triphosphate (IP3) and ryanodine receptors). Moreover, 7-HC diminishes the mesenteric artery’s responsiveness to α1-adrenergic agonist challenge and improves the actions of the muscarinic agonist and NO donor. The present work demonstrated that the relaxant mechanism of 7-HC in SHR involves endothelium-independent vasorelaxant factors. Additionally, 7-HC reduced vasoconstriction of the sympathetic agonist while improving vascular endothelium-dependent and independent relaxation. 相似文献
We present a detailed analysis of the self-injected Nd:YAG laser which is capable of generating subnanosecond duration pulses with peak powers as high as 200 MW. The model predicts that pulses with durations much shorter than the electrical rise time of the electrooptical switch driver can be obtained. Application of this technique to a conventionally Q-switched Nd:YAG laser allowed us to obtain 550 ps pulses with 120 mJ in a very stable and reliable way. 相似文献