首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   850篇
  免费   52篇
  国内免费   6篇
化学   703篇
晶体学   4篇
力学   12篇
数学   82篇
物理学   107篇
  2023年   14篇
  2022年   11篇
  2021年   18篇
  2020年   25篇
  2019年   26篇
  2018年   16篇
  2017年   22篇
  2016年   26篇
  2015年   24篇
  2014年   28篇
  2013年   56篇
  2012年   74篇
  2011年   79篇
  2010年   35篇
  2009年   30篇
  2008年   59篇
  2007年   51篇
  2006年   40篇
  2005年   47篇
  2004年   37篇
  2003年   30篇
  2002年   29篇
  2001年   10篇
  2000年   14篇
  1999年   11篇
  1998年   7篇
  1997年   14篇
  1996年   10篇
  1995年   2篇
  1994年   6篇
  1993年   5篇
  1992年   2篇
  1991年   7篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1983年   2篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   1篇
  1931年   2篇
排序方式: 共有908条查询结果,搜索用时 15 毫秒
91.
Well known results related to the compactness of Hankel operators of one complex variable are extended to little Hankel operators of two complex variables. Critical to these considerations is the result of Ferguson and Lacey (2002) characterizing the boundedness of the little Hankel operators in terms of the product BMO of S.-Y. Chang and R. Fefferman (1985), (1980).

  相似文献   

92.
The aim of this review is to present the contributions to the development of electrochemical sensors and biosensors based on polyphenazine or polytriphenylmethane redox polymers together with carbon nanotubes (CNT) during recent years. Phenazine polymers have been widely used in analytical applications due to their inherent charge transport properties and electrocatalytic effects. At the same time, since the first report on a CNT-based sensor, their application in the electroanalytical chemistry field has demonstrated that the unique structure and properties of CNT are ideal for the design of electrochemical (bio)sensors. We describe here that the specific combination of phenazine/triphenylmethane polymers with CNT leads to an improved performance of the resulting sensing devices, because of their complementary electrical, electrochemical and mechanical properties, and also due to synergistic effects. The preparation of polymer/CNT modified electrodes will be presented together with their electrochemical and surface characterization, with emphasis on the contribution of each component on the overall properties of the modified electrodes. Their importance in analytical chemistry is demonstrated by the numerous applications based on polymer/CNT-driven electrocatalytic effects, and their analytical performance as (bio) sensors is discussed.  相似文献   
93.
A nitrogen (N)-doped mesoporous carbon material exhibiting ultra-high surface area was successfully synthesized from sheep bones via a facile and low-cost method. The obtained carbon material had an ultra-high specific surface area of 1961 m2 g?1 and provided rich active sites for the oxygen reduction reaction (ORR), which in turn resulted in high electrocatalytic activity. It was found that the pore size distribution for the newly prepared carbonaceous material fell in the range of 1–4 nm. Benefiting from its high surface area and the presence of pyridine-N and quaternary-N species, the as-prepared carbon material exhibited excellent ORR activity in an oxygen-saturated 0.1 M KOH solution, compared to commercial Pt/C (10 wt%). Due to its high ORR catalytic activity, stability and low-cost, using sheep bone as C and N precursors to produce N-doped carbon provides an encouraging step toward the goal of replacing commercial Pt/C as fuel cell cathode electrocatalyst.  相似文献   
94.
The primary purpose of this study was to examine the ways in which a 12‐week afterschool science and engineering program affected middle school students' motivation to engage in science and engineering activities. We used current motivation research and theory as a conceptual framework to assess 14 students' motivation through questionnaires, structured interviews, and observations. Students reported that during the activities they perceived that they were empowered to make choices in how to complete things, the activities were useful to them, they could succeed in the activities, they enjoyed and were interested in the hands‐on activities and some presentations, they felt cared for by the facilitators and received help when they were stuck or confused, and they put forth effort. Based on our examination of data across our three data sources, we identified motivating opportunities that were provided to students during the activities. These motivating opportunities can serve as examples to help both formal and informal science educators better connect motivation theory to practice so that they can create motivating opportunities for students. Furthermore, this study provides a methodological example of how students' motivation can be examined during the context of authentic science and engineering instruction.  相似文献   
95.
Photobiologic and synthetic versatility of hydrazones has not yet been established with 1O2 as a route to commonly encountered nitrosamines. Thus, to determine whether the “parent” reaction of formalhydrazone and 1O2 leads to facile C=N bond cleavage and resulting nitrosamine formation, we have carried out CCSD(T)//DFT calculations and analyzed the energetics of the oxidation pathways. A [2 + 2] pathway occurs via diradicals and formation of 3‐amino‐1,2,3‐dioxazetidine in a 16 kcal/mol?1 process. Reversible addition or physical quenching of 1O2 occurs either on the formalhydrazone carbon for triplet diradicals at 2–3 kcal mol?1, or on the nitrogen (N(3)) atom forming zwitterions at ~15 kcal/mol?1, although the quenching channel by charge‐transfer interaction was not computed. The computations also predict a facile conversion of formalhydrazone and 1O2 to hydroperoxymethyl diazene in a low‐barrier ‘ene’ process, but no 2‐amino‐oxaziridine‐O‐oxide (perepoxide‐like) intermediate was found. A Benson‐like analysis (group increment calculations) on the closed‐shell species are in accord with the quantum chemical results.  相似文献   
96.
97.
This review will detail the motivations, experimental approaches, and growing list of successful cases associated with the heterologous production of complex natural products.  相似文献   
98.
99.
Centrifugally-driven microfluidic compact discs (μ-CDs) have attracted significant interest within the analytical science community in the past decade, with the primary focus on the potential of such platforms for performing parallel and/or multiplex biological assays and further application in biomedical diagnostics. More recently, μ-CD-based devices were also applied to environmental analysis as platforms for multi-sample extraction and transportation, prior to off-disc analysis in the laboratory. This review critically summarizes recent developments in μ-CD platforms for sample extraction, preconcentration, fractionation and purification in bioanalytical and environmental applications. We also summarize the common methods employed in the fabrication of μ-CD platforms. Further, we discuss preparation of stationary phases in microfluidic channels embedded in μ-CDs, as applications of μ-CDs in sample extraction are generally based on enclosed series of extraction phases and microcolumns.  相似文献   
100.
A series of lead(II) coordination polymers containing [N(CN)2]? (DCA) or [Au(CN)2]? bridging ligands and substituted terpyridine (terpy) ancillary ligands ([Pb(DCA)2] ( 1 ), [Pb(terpy)(DCA)2] ( 2 ), [Pb(terpy){Au(CN)2}2] ( 3 ), [Pb(4′‐chloro‐terpy){Au(CN)2}2] ( 4 ) and [Pb(4′‐bromo‐terpy)(μ‐OH2)0.5{Au(CN)2}2] ( 5 )) was spectroscopically examined by solid‐state 207Pb MAS NMR spectroscopy in order to characterise the structural and electronic changes associated with lead(II) lone‐pair activity. Two new compounds, 2 and [Pb(4′‐hydroxy‐terpy){Au(CN)2}2] ( 6 ), were prepared and structurally characterised. The series displays contrasting coordination environments, bridging ligands with differing basicities and structural and electronic effects that occur with various substitutions on the terpyridine ligand (for the [Au(CN)2]? polymers). 207Pb NMR spectra show an increase in both isotropic chemical shift and span (Ω) with increasing ligand basicity (from δiso=?3090 ppm and Ω=389 ppm for 1 (the least basic) to δiso=?1553 ppm and Ω=2238 ppm for 3 (the most basic)). The trends observed in 207Pb NMR data correlate with the coordination sphere anisotropy through comparison and quantification of the Pb? N bond lengths about the lead centre. Density functional theory calculations confirm that the more basic ligands result in greater p‐orbital character and show a strong correlation to the 207Pb NMR chemical shift parameters. Preliminary trends suggest that 207Pb NMR chemical shift anisotropy relates to the measured birefringence, given the established correlations with structure and lone‐pair activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号