首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   336篇
  免费   13篇
化学   245篇
晶体学   1篇
力学   5篇
数学   29篇
物理学   69篇
  2023年   3篇
  2022年   5篇
  2020年   9篇
  2019年   10篇
  2018年   6篇
  2017年   4篇
  2016年   8篇
  2015年   6篇
  2014年   7篇
  2013年   19篇
  2012年   15篇
  2011年   18篇
  2010年   6篇
  2009年   8篇
  2008年   10篇
  2007年   15篇
  2006年   22篇
  2005年   23篇
  2004年   19篇
  2003年   15篇
  2002年   13篇
  2001年   3篇
  2000年   5篇
  1999年   3篇
  1998年   2篇
  1996年   5篇
  1995年   2篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   4篇
  1990年   2篇
  1989年   3篇
  1988年   7篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1974年   2篇
  1973年   4篇
  1972年   3篇
  1971年   2篇
  1966年   1篇
  1938年   2篇
排序方式: 共有349条查询结果,搜索用时 15 毫秒
41.
This work demonstrates the dominance of a Ni(0/II/III) cycle for Ni-photoredox amide arylation, which contrasts with other Ni-photoredox C-heteroatom couplings that operate via Ni(I/III) self-sustained cycles. The kinetic data gathered when using different Ni precatalysts supports an initial Ni(0)-mediated oxidative addition into the aryl bromide. Using NiCl2 as the precatalyst resulted in an observable induction period, which was found to arise from a photochemical activation event to generate Ni(0) and to be prolonged by unproductive comproportionation between the Ni(II) precatalyst and the in situ generated Ni(0) active species. Ligand exchange after oxidative addition yields a Ni(II) aryl amido complex, which was identified as the catalyst resting state for the reaction. Stoichiometric experiments showed that oxidation of this Ni(II) aryl amido intermediate was required to yield functionalized amide products. The kinetic data presented supports a rate-limiting photochemically-mediated Ni(II/III) oxidation to enable C−N reductive elimination. An alternative Ni(I/III) self-sustained manifold was discarded based on EPR and kinetic measurements. The mechanistic insights uncovered herein will inform the community on how subtle changes in Ni-photoredox reaction conditions may impact the reaction pathway, and have enabled us to include aryl chlorides as coupling partners and to reduce the Ni loading by 20-fold without any reactivity loss.  相似文献   
42.
43.
44.
The triphenylsiloxy-substituted cyclotriphosphazenes, N3P3Cl5OSiPh3, gem-N3P3Cl4(OSiPh3)2, N3P3(OSiPh3)6, and N3P3(OPh)5OSiPh3, have been prepared. The synthesis of gem-N3P3Cl4(OSiPh3)2 involves the reaction of (NPCl2)3 with Ph3SiONa to form the intermediates gem-N3P3Cl4(OSiPh3)2(ONa) and gem-N3P3Cl4(ONa)2, which yield gem-N3P3Cl4(OSiPh3)2 when treated with Ph3SiCl. The compounds N3P3Cl5OSiPh3 and N3P3(OSiPh3)0 are formed by the condensation reactions of N3P3Cl5OBun and N3P3(OBun)6, respectively, with Ph3SiCl. The compound N3P3(OPh)5OSiPh3 is synthesized by the reaction between N3P3(OPh)5Cl and Et3SiONa to first give the intermediate N3P3(OPh)5ONa, which yields N3P3(OPh)5OSiPh3 when reacted with Ph3SiCl. The structural characterization and properties of these compounds are discussed. The crystal and molecular structure of gem-N3P3Cl4(OSiPh3)2 has been investigated by single-crystal X-ray diffraction techniques. The crystals are monoclinic with the space group P21/c with a = 16.850(8), b = 12.829(4), c = 18.505(15) Å, and β = 101.00(6)° with V = 3927 Å3 and Z = 4. © 1996 John Wiley & Sons, Inc.  相似文献   
45.
We present new evidence and a model for residual ordering of silicon atoms within the oxide of thermally oxidized silicon wafers. X-ray scattering is used to observe the residual order in thermally grown SiO2 on Si(001), (011), and (111) surfaces with thicknesses of 60 to 1000 A, for both on-axis and miscut surfaces. In every case, the scattering position can be predicted using a model which expands the silicon lattice during oxidation without completely disordering it. The amount of expansion and disorder is dependent on the type of oxidation process employed.  相似文献   
46.
J. K. Brennan 《Molecular physics》2013,111(19):2647-2654
A methodology is presented to sample efficiently configurations of reacting mixtures in the reaction ensemble Monte Carlo simulation technique. A cavity-biasing scheme is used, which more effectively samples configurations than conventional random sampling. Akin to other biasing schemes that are implemented into insertion-based Monte Carlo methods such as Gibbs ensemble Monte Carlo, the method presented here searches for space in the reacting mixture whereby the insertion of a product molecule is energetically favoured. This sampling bias is then corrected in the acceptance criteria. The approach allows for the study of reacting mixtures at high density as well as for polyatomic molecular species. For some cases, the method is shown to increase the efficiency of the reaction steps by a factor greater than 20. The approach is shown to be readily generalized to other biasing schemes such as orientational-biasing of polar molecules and configurational-biasing of chain-like molecules.  相似文献   
47.
The preparation of discrete polyol based silane precursors derived from glycerol by a simple one-pot process is described. These polyol-based silanes could be hydrolyzed under mild pH conditions and upon gelation resulted in the formation of optically clear, monolithic, mesoporous silica. The hydrolysis and condensation reactions lead to cure rates that are very sensitive to ionic strength, but are almost unaffected by pH in contrast to those of alkoxysilanes derived from primary alcohols such as Si(OEt)4. Residual glycerol in the silica monolith could be removed by washing, or could be left in the silica to reduce the magnitude of shrinkage during long term storage. The biocompatible glyceroxysilane precursors lead to materials that were able to retain the activity of entrapped enzymes over repeated cycles of use for periods of up to several months.  相似文献   
48.
The first example of a unidimensional zirconium hydroxide fluoride was synthesized under mild solvothermal treatment and characterized by X-ray diffraction and thermal techniques. Monoprotonated ethylenediamine cations reside between the anionic chains. Crystal data for this material are as follows: [C2N2H9][Zr(OH)2F3], M=243.35, orthorhombic, space group Pca21, a=6.8016(13), b=6.1393(12), , , , Z=4, , μ(Mo-Kα)=1.777 mm−1, . The material transforms to an unknown layered material at ∼175 °C, a common occurrence for 1D structures where the chains are arranged in hydrogen-bonded layers and separated by interlayer organoammoniums. Collapse to the known condensed mineral phase Zr(FO)2.7 occurs at ca. 275 °C before finally transforming to the baddeleyite form of ZrO2 at ca. 460 °C.  相似文献   
49.
We present a mesoscale simulation technique, called the reaction ensemble dissipative particle dynamics (RxDPD) method, for studying reaction equilibrium of polymer systems. The RxDPD method combines elements of dissipative particle dynamics (DPD) and reaction ensemble Monte Carlo (RxMC), allowing for the determination of both static and dynamical properties of a polymer system. The RxDPD method is demonstrated by considering several simple polydispersed homopolymer systems. RxDPD can be used to predict the polydispersity due to various effects, including solvents, additives, temperature, pressure, shear, and confinement. Extensions of the method to other polymer systems are straightforward, including grafted, cross-linked polymers, and block copolymers. To simulate polydispersity, the system contains full polymer chains and a single fractional polymer chain, i.e., a polymer chain with a single fractional DPD particle. The fractional particle is coupled to the system via a coupling parameter that varies between zero (no interaction between the fractional particle and the other particles in the system) and one (full interaction between the fractional particle and the other particles in the system). The time evolution of the system is governed by the DPD equations of motion, accompanied by changes in the coupling parameter. The coupling-parameter changes are either accepted with a probability derived from the grand canonical partition function or governed by an equation of motion derived from the extended Lagrangian. The coupling-parameter changes mimic forward and reverse reaction steps, as in RxMC simulations.  相似文献   
50.
Dense monolayers of [Ru(dpp)2Qbpy]2+, where dpp is 4,4'-diphenylphenanthroline and Qbpy is 2,2':4,4' ':4'4' '-quarterpyridyl, have been formed by spontaneous adsorption onto clean platinum microelectrodes. The cyclic voltammetry of these monolayers is nearly ideal, and three redox states are accessible over the potential range of +/-1.3 V. Chronoamperometry conducted on the microsecond time scale has been used to probe the dynamics of heterogeneous electron transfer and indicates that the standard heterogeneous electron-transfer rate constant, k degrees , is approximately 106 s-1. The metal complex emits at approximately 600 nm in fluid and solid solution as well as when bound to a platinum electrode surface within a dense monolayer. In the case of the monolayers, it appears that the excited states are not completely deactivated by radiationless energy transfer to the metal because electronic coupling between the adsorbates and the electrode is weak. The dynamics of lateral electron transfer between the electronically excited Ru2+* and ground-state Ru3+ species has been explored by measuring the luminescence intensity after defined quantities of Ru3+ have been produced electrochemically within the monolayer. The rate of lateral electron transfer is between 8 x 106 and 3 x 108 M-1 s-1, indicating efficient electron transfer between adsorbates in close-packed assemblies. Voltammetry conducted at megavolt per second scan rates has been used to directly probe the redox properties of the electronically excited species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号