首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1514篇
  免费   43篇
  国内免费   6篇
化学   965篇
晶体学   4篇
力学   31篇
数学   117篇
物理学   446篇
  2021年   13篇
  2019年   18篇
  2017年   19篇
  2016年   33篇
  2015年   26篇
  2014年   24篇
  2013年   58篇
  2012年   48篇
  2011年   71篇
  2010年   34篇
  2009年   28篇
  2008年   53篇
  2007年   61篇
  2006年   56篇
  2005年   45篇
  2004年   44篇
  2003年   33篇
  2002年   41篇
  2001年   29篇
  2000年   35篇
  1999年   13篇
  1998年   16篇
  1997年   20篇
  1996年   28篇
  1995年   21篇
  1994年   28篇
  1993年   26篇
  1992年   26篇
  1991年   24篇
  1990年   22篇
  1989年   34篇
  1988年   17篇
  1987年   20篇
  1986年   14篇
  1985年   23篇
  1984年   28篇
  1983年   21篇
  1982年   18篇
  1981年   17篇
  1980年   28篇
  1979年   18篇
  1978年   44篇
  1977年   25篇
  1976年   28篇
  1975年   29篇
  1974年   20篇
  1973年   25篇
  1972年   13篇
  1971年   10篇
  1969年   10篇
排序方式: 共有1563条查询结果,搜索用时 15 毫秒
991.
This paper compares smectic phases formed from LC‐homo‐ and LC‐co‐polysiloxanes. In the homopolysiloxane, each repeating unit of the polymer chain is substituted with a mesogen, whereas in the copolysiloxanes mesogenic repeating units are separated by dimethylsiloxane units. Despite a rather similiar phase sequence of the homo‐ and co‐polysiloxanes—higher ordered smectic, smectic C* (SmC*), smectic A (SmA) and isotropic—the nature of their phases differs strongly. For the copolymers the phase transition SmC* to SmA is second order and of the ‘de Vries’ type with a very small thickness change of the smectic layers. Inside the SmA phase, however, the smectic thickness decreases strongly on approaching the isotropic phase. For the homopolymer the phase transition SmC* to SmA is first order with a significant thickness change, indicating that this phase is not of the ‘de Vries’ type. This difference in the nature of the smectic phases is probably a consequence of microphase separation in the copolymer, which facilitates a loss of the tilt angle correlation between different smectic layers. This has consequences for the mechanical properties of LC‐elastomers formed from homo‐ and co‐polymers. For the elastomers from homopolymers the smectic layer compression seems to be rather high, while it seems to be rather small for the copolymers.  相似文献   
992.
We consider the time-optimal control of an ensemble of uncoupled spin 1/2 particles in the presence of relaxation and radiation damping effects, whose dynamics is governed by nonlinear equations generalizing the standard linear Bloch equations. For a single spin, the optimal control strategy can be fully characterized analytically. However, in order to take into account the inhomogeneity of the static magnetic field, an ensemble of isochromats at different frequencies must be considered. For this case, numerically optimized pulse sequences are computed and the dynamics under the corresponding optimal field is experimentally demonstrated using nuclear magnetic resonance techniques.  相似文献   
993.
Herein, we give a detailed experimental analysis for scaling law behavior in the "moderately dense" and "high-density" brush regimes for poly(methyl methacrylate) brushes swollen in a range of solvent conditions. This expansive experimental analysis aims to validate decades of mean field theory predictions on power law scaling behavior of grafted polymer chains. Brushes with grafting densities (σ) ranging from 0.1 to 0.8 nm(-2) are prepared by atom-transfer radical polymerization. The swollen thickness (h) is characterized using liquid cell ellipsometry, and the solvent quality is varied using mixtures of acetone and methanol. In a good solvent, the exponential scaling behavior (h ∝ σ(n)) has the typical n = 1/3 dependency for grafting densities of σ ≤ 0.4 nm(-2). For grafting densities of >0.4 nm(-2), n increases, indicating the transition from the moderately dense to the high-density brush regime. However, in a poor solvent, the scaling behavior is independent of σ and scales as h ∝ σ(0.80), approaching the theoretical expectations of h ∝ σ(1). An abrupt transition between these scaling law behaviors occurs at the Θ-solvent condition of ~45% (v/v) methanol in acetone. While our experimental results parallel trends predicted by mean field theory, differences are observed and appear to be attributed to self-solvation of the polymer, polydispersity in the molecular weight, and chain termination.  相似文献   
994.
995.
Transport across the membranes of polymersomes remains difficult in part due to the great thickness of the polymer bilayers. Here, we report that dynamic polyion-counterion transport systems are active in fluorogenic polymersomes composed of poly(dimethylsiloxane)-b-poly(2-methyloxazoline) (PDMS-PMOXA). These results suggest that counterion-activated calf-thymus DNA can act as cation carrier that moves not only across lipid bilayer and bulk chloroform membranes but also across the "plastic" membranes of polymersomes. Compared to egg yolk phosophatidylcholine (EYPC) lipsosomes, activities and activator scope in PDMS-PMOXA polymersomes are clearly reduced. Embedded in agar gel matrices, fluorogenic PDMS-PMOXA polymersomes respond reliably to polyion-counterion transporters, with high contrast, high stability and preserved selectivity. Compared to standard EYPC liposomes, it cannot be said that PDMS-PMOXA polymersomes are better. However, they are different, and this difference could be interesting for the development of sensing devices.  相似文献   
996.
Braun MG  Heng R  Zard SZ 《Organic letters》2011,13(5):1230-1233
Methylketone side chains can be used to direct the creation of one or more chiral centers, including quaternary centers, by exploiting the ability of the radical xanthate transfer process to mediate six-membered ring formation.  相似文献   
997.
Liposomes are single bilayer capsules with distinct interior compartments in which hydrophilic drugs, imaging agents, diagnostics, etc. can be sequestered from the exterior environment. The polar parts of the individual lipids face the water compartments, while the hydrophobic parts of the lipid provide a barrier in which hydrophilic or charged molecules are poorly soluble. Hydrophobic molecules can be dissolved within the bilayer. The bilayers are typically from 3 - 6 nm thick and the liposome can range from about 50 nm - 50 microns in diameter. The question asked in this review is if any one bilayer, regardless of its composition, can provide the extended drug retention, long lifetime in the circulation, active targeting to specific tissues and rapid and controllable drug release at the site of interest. As an alternative, we review methods of self-assembling multicompartment lipid structures that provide enhanced drug retention in physiological environments. We also review methods of externally targeting and triggering drug release via the near infrared heating of gold nanoshells attached to or encapsulated within bilayer vesicles.  相似文献   
998.
The reaction of (S)-1,1,2-triphenylethanediol (3) with phosphorus trichloride leads to the diastereoselective formation of (S C,R P)-2-chloro-1,3,2-dioxaphospholane (2). Its configuration has been determined by single crystal X-ray diffraction. When reacted with racemic secondary alcohols, diastereomeric phosphites are obtained, which display substantial shift differences in the 31P NMR spectra. Thus, chlorodioxaphospholane 2 can serve as derivatizing reagent for chiral secondary alcohols permitting to determine their enantiomeric excess.  相似文献   
999.
1000.
We study the phase diagram of two-flavor QCD at imaginary chemical potentials in the chiral limit. To this end we compute order parameters for chiral symmetry breaking and quark confinement. The interrelation of quark confinement and chiral symmetry breaking is analyzed with a new order parameter for the confinement phase transition. We show that it is directly related to both the quark density as well as the Polyakov loop expectation value. Our analytical and numerical results suggest a close relation between the chiral and the confinement phase transition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号