首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   3篇
化学   51篇
晶体学   1篇
数学   9篇
物理学   58篇
  2019年   4篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   5篇
  2011年   5篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   8篇
  2006年   7篇
  2005年   4篇
  2004年   3篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1957年   1篇
  1882年   2篇
排序方式: 共有119条查询结果,搜索用时 15 毫秒
51.
We report the detection of triazane (N3H5) in the gas phase. Triazane is a higher order nitrogen hydride of ammonia (NH3) and hydrazine (N2H4) of fundamental importance for the understanding of the stability of single‐bonded chains of nitrogen atoms and a potential key intermediate in hydrogen–nitrogen chemistry. The experimental results along with electronic‐structure calculations reveal that triazane presents a stable molecule with a nitrogen–nitrogen bond length that is a few picometers shorter than that of hydrazine and has a lifetime exceeding 6±2 μs at a sublimation temperature of 170 K. Triazane was synthesized through irradiation of ammonia ice with energetic electrons and was detected in the gas phase upon sublimation of the ice through soft vacuum ultraviolet (VUV) photoionization coupled with a reflectron‐time‐of‐flight mass spectrometer. Isotopic substitution experiments exploiting [D3]‐ammonia ice confirmed the identification through the detection of its fully deuterated counterpart [D5]‐triazane (N3D5).  相似文献   
52.
53.
19FNMR spectroscopy has been used to characterize fluorine implanted into polyacetylene and highly orientated pyrolytic graphite. The intensities of the 19F NMR spectra at 4.5 K show that essentially all the fluorine is retained in these materials after the implantation process is over. The Une width of the spectrum of the graphite sample indicates that the fluorine remains where it was deposited.For the polyacetylene sample the ratio of the NMR solid echo height to the spin echo height, as calibrated herein, shows that the predominant nuclear diploar interaction of the implanted fluorine is heteronuclear.  相似文献   
54.
The purpose of this paper is to describe the model of a mathematics and science staff development cooperative and focus on the evaluation of the mathematics component. The Mathematics and Science Education Cooperative (MSEC) was a comprehensive, long‐range staff development program to improve the teaching and learning of mathematics and science at the elementary school level. The special features of MSEC were (a) it provided year‐round, multiyear involvement, and (b) each year an affective strand was included. Statistically significant student mathematics results from the years 1998–2000 are presented.  相似文献   
55.
Energy spectrum and electromagnetic properties of205Pb have been studied in the cluster-vibration model (CVM). The lifetime of 0.3 ms was predicted for the 2.3 keV level which is of significance for considerations of the205Tl solar neutrino detector.  相似文献   
56.
Cu3(O2C16H23)6.1.2C6H12, containing a Cu36+ core in an equilateral triangle geometry, has been found to be a versatile model system for investigating the spin-frustration phenomenon in a triangular lattice. It affords well-resolved EPR spectra from both of the two possible (Stotal = 1/2 and 3/2) spin states of the Cu36+ core. From 295 to 100 K, the spectra consist of a triplet, but with the central line overlapped by an additional, sharp peak, which replaces the triplet at 30 K and below. The triplet was thus assigned to the excited state with Stotal = 3/2, located at 324 +/- 5 K ( approximately 225 cm-1), with the zero-field parameters D = -535 G, E = 0, g parallel = 2.209 and g perpendicular = 2.057. The singlet was attributed to the Stotal = 1/2 state, with gxx = 2.005, gyy = 2.050, gzz = 2.282, and, surprisingly, a hyperfine splitting arising from a single Cu2+ nucleus, with Azz = 157 G. The detailed magnetic measurements on a three-electron, equilateral triangular system, and the observation of symmetry lowering in the doublet ground state, should be of broad theoretical and experimental interest in molecular magnetism.  相似文献   
57.
Chemical force microscopy (CFM) was used to characterize the chemical heterogeneity of two commercially available nanofiltration and reverse osmosis membranes. CFM probes were modified with three different terminal functionalities: methyl (CH3), carboxyl (COOH), and hydroxyl (OH). Chemically distinct information about the membrane surfaces was deduced based on differences in adhesion between the CFM probes and the membrane surfaces using both traditional atomic force microscopy (AFM) force measurements and spatially resolved friction images. Contact angle titration and streaming potential measurements provided general information about surface chemistry and potential, which largely complemented the CFM analyses, but could not match the accuracy of CFM on the atomic level. Using CFM it was found that both membranes were characterized as chemically heterogeneous. Specifically, membrane chemical heterogeneity became more significant as the scan size approached colloidal or micron-sized dimensions. In many instances, the chemically unique regions, contributing to the overall chemical heterogeneity of the membrane surface, were substantially different in chemistry (e.g., hydrophobicity) from that determined for the surface at large from contact angel and streaming potential analyses. Topographical and corresponding CFM images supports previous adhesion studies finding a correlation between surface roughness and the magnitude of adhesion measured with AFM. However, chemical specificity was also significant and in turn measurable with CFM. The implication of these findings for future membrane development is discussed.  相似文献   
58.
The photoionization efficiency (PIE) and pulsed field ionization-photoion (PFI-PI) spectra for sulfur atoms S(3P2,1,0) and S(1D2) resulting from the 193.3 nm photodissociation of CS2 have been measured using tunable vacuum ultraviolet (vuv) laser radiation in the frequency range of 82 750-83 570 cm(-1). The PIE spectrum of S(3P2,1,0) near their ionization threshold exhibits steplike structures. On the basis of the velocity-mapped ion-imaging measurements, four strong autoionizing peaks observed in the PIE measurement in this frequency range have been identified to originate from vuv excitation of S(1D2). The PFI-PI measurement reveals over 120 previously unidentified new Rydberg lines. They have been assigned as Rydberg states [3p3(4S composite function nd3 D composite function (n=17-64)] converging to the ground ionic state S+(4S composite function) formed by vuv excitations of S(3P2,1,0). The converging limits of these Rydberg series have provided more accurate values, 82 985.43+/-0.05, 83 162.94+/-0.05, and 83 559.04+/-0.05 cm(-1) for the respective ionization energies of S(3P0), S(3P1), and S(3P2) to form S+(4S composite function). The relative intensities of the PFI-PI bands for S(3P0), S(3P1), and S(3P2) have been used to determine the branching ratios for these fine structure states, S(3P0):S(3P1):S(3P2)=1.00:1.54:3.55, produced by photodissociation of CS2 at 193.3 nm.  相似文献   
59.
Employing a high-resolution (velocity resolution deltanu/nu<1.5%) time-sliced ion velocity imaging apparatus, we have examined the photodissociation of CH2BrCl in the photon energy range of 448.6-618.5 kJ/mol (193.3-266.6 nm). Precise translational and angular distributions for the dominant Br(2P32) and Br(2P12) channels have been determined from the ion images observed for Br(2P32) and Br(2P12). In confirmation with the previous studies, the kinetic-energy distributions for the Br(2P12) channel are found to fit well with one Gaussian function, whereas the kinetic- energy distributions for the Br(2P32) channel exhibit bimodal structures and can be decomposed into a slow and a fast Gaussian component. The observed kinetic-energy distributions are consistent with the conclusion that the formation of the Br(2P32) and Br(2P12) channels takes place on a repulsive potential-energy surface, resulting in a significant fraction (0.40-0.47) of available energy to appear as translational energy for the photo fragments. On the basis of the detailed kinetic-energy distributions and anisotropy parameters obtained in the present study, together with the specific features and relative absorption cross sections of the excited 2A', 1A", 3A', 4A', and 2A" states estimated in previous studies, we have rationalized the dissociation pathways of CH2BrCl in the A-band, leading to the formation of the Br(2P32) and Br(2P12) channels. The analysis of the ion images observed at 235 nm for Cl(2P(32,12)) provides strong evidence that the formation of Cl mainly arises from the secondary photodissociation process CH2Cl + hnu --> CH2 + Cl.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号